Advertisement

Chromosoma

pp 1–18 | Cite as

Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination

  • Charles J. UnderwoodEmail author
  • Kyuha ChoiEmail author
Review

Abstract

During meiosis, DNA double-strand breaks are initiated by the topoisomerase-like enzyme SPO11 and are repaired by inter-sister chromatid and inter-homologue DNA repair pathways. Genome-wide maps of initiating DNA double-strand breaks and inter-homologue repair events are now available for a number of mammalian, fungal and plant species. In mammals, PRDM9 specifies the location of meiotic recombination initiation via recognition of specific DNA sequence motifs by its C2H2 zinc finger array. In fungi and plants, meiotic recombination appears to be initiated less discriminately in accessible chromatin, including at gene promoters. Generally, meiotic crossover is suppressed in highly repetitive genomic regions that are made up of transposable elements (TEs), to prevent deleterious non-allelic homologous recombination events. However, recent and older studies have revealed intriguing relationships between meiotic recombination initiation and repair, and transposable elements. For instance, gene conversion events have been detected in maize centromeric retroelements, mouse MULE-MuDR DNA transposons undergo substantial meiotic recombination initiation, Arabidopsis Helitron TEs are among the hottest of recombination initiation hotspots, and human TE sequences can modify the crossover rate at adjacent PRDM9 motifs in cis. Here, we summarize the relationship between meiotic recombination and TEs, discuss recent insights from highly divergent eukaryotes and highlight outstanding questions in the field.

Keywords

Transposable elements Meiosis Recombination Crossover DNA repair Epigenetics 

Notes

Acknowledgements

K.C. acknowledges support for his laboratory from the Suh Kyungbae Foundation, RDA Next-Generation BioGreen 21 Program PJ01337001 and NRF Basic Science Research Program NRF-2017R1D1AB03028374. We apologize to our peers whose studies could not be cited due to space limitations.

References

  1. Alper BJ, Job G, Yadav RK, Shanker S, Lowe BR, Partridge JF (2013) Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 32:2321–2335.  https://doi.org/10.1038/emboj.2013.143 Google Scholar
  2. Altemose N, Noor N, Bitoun E, Tumian A, Imbeault M, Chapman JR, Aricescu AR, Myers SR (2017) A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis. Elife 6:e28383.  https://doi.org/10.7554/eLife.28383 Google Scholar
  3. Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I (2015) Crossovers are associated with mutation and biased gene conversion at recombination hotspots. PNAS 112:2109–2114.  https://doi.org/10.1073/pnas.1416622112 Google Scholar
  4. Baker Z, Schumer M, Haba Y et al (2017) Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. Elife 6:e24133.  https://doi.org/10.7554/eLife.24133 Google Scholar
  5. Baud A, Wan M, Nouaud D, et al (2019) Traces of past transposable element presence in Brassicaceae genome dark matter bioRxiv 547877. doi:  https://doi.org/10.1101/547877
  6. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840.  https://doi.org/10.1126/science.1183439 Google Scholar
  7. Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530.  https://doi.org/10.1146/annurev-arplant-050213-035811 Google Scholar
  8. Blitzblau HG, Bell GW, Rodriguez J, Bell SP, Hochwagen A (2007) Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. Curr Biol 17:2003–2012.  https://doi.org/10.1016/j.cub.2007.10.066 Google Scholar
  9. Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13:389–401Google Scholar
  10. Borde V, Robine N, Lin W, Bonfils S, Géli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111.  https://doi.org/10.1038/emboj.2008.257 Google Scholar
  11. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99.  https://doi.org/10.1038/nature02886 Google Scholar
  12. Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485:642–645.  https://doi.org/10.1038/nature11089 Google Scholar
  13. Brick K, Thibault-Sennett S, Smagulova F, Lam KWG, Pu Y, Pratto F, Camerini-Otero RD, Petukhova GV (2018) Extensive sex differences at the initiation of genetic recombination. Nature 561:338–342.  https://doi.org/10.1038/s41586-018-0492-5 Google Scholar
  14. Brown MS, Bishop DK (2015) DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb Perspect Biol 7:a016659.  https://doi.org/10.1101/cshperspect.a016659 Google Scholar
  15. Buhler C, Borde V, Lichten M (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 5:e324.  https://doi.org/10.1371/journal.pbio.0050324 Google Scholar
  16. Buisine N, Quesneville H, Colot V (2008) Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics 91:467–475.  https://doi.org/10.1016/j.ygeno.2008.01.005 Google Scholar
  17. Calarco JP, Borges F, Donoghue MTA, van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205.  https://doi.org/10.1016/j.cell.2012.09.001 Google Scholar
  18. Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS (2013) Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet 9:e1003545.  https://doi.org/10.1371/journal.pgen.1003545 Google Scholar
  19. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112.  https://doi.org/10.1038/nrg3355 Google Scholar
  20. Chalopin D, Naville M, Plard F, Galiana D, Volff JN (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580.  https://doi.org/10.1093/gbe/evv005 Google Scholar
  21. Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res 129:143–153.  https://doi.org/10.1159/000314096 Google Scholar
  22. Choi K, Henderson IR (2015) Meiotic recombination hotspots—a comparative view. Plant J 83:52–61.  https://doi.org/10.1111/tpj.12870 Google Scholar
  23. Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR (2016) Recombination rate heterogeneity within Arabidopsis disease resistance genes. PLoS Genet 12:e1006179.  https://doi.org/10.1371/journal.pgen.1006179 Google Scholar
  24. Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FCH, McVean G, Henderson IR (2013) Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 45:1327–1336.  https://doi.org/10.1038/ng.2766 Google Scholar
  25. Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, Serra H, Kim J, Cho HS, Kim J, Ziolkowski PA, Yelina NE, Hwang I, Martienssen RA, Henderson IR (2018) Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res 28:532–546.  https://doi.org/10.1101/gr.225599.117 Google Scholar
  26. Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721.  https://doi.org/10.1126/science.1249721 Google Scholar
  27. Chuong EB, Elde NC, Feschotte C (2016) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18:71–86.  https://doi.org/10.1038/nrg.2016.139 Google Scholar
  28. Colomé-Tatché M, Cortijo S, Wardenaar R et al (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci U S A 109:16240–16245.  https://doi.org/10.1073/pnas.1212955109 Google Scholar
  29. Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.  https://doi.org/10.1038/35057062 Google Scholar
  30. Consortium MGS (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562.  https://doi.org/10.1038/nature01262 Google Scholar
  31. Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie W, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474Google Scholar
  32. Cromie GA, Hyppa RW, Cam HP, Farah JA, Grewal SIS, Smith GR (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet 3:e141.  https://doi.org/10.1371/journal.pgen.0030141 Google Scholar
  33. Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F (2014) Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 15:546.  https://doi.org/10.1186/s13059-014-0546-4 Google Scholar
  34. Darrier B, Rimbert H, Balfourier F, Pingault L, Josselin AA, Servin B, Navarro J, Choulet F, Paux E, Sourdille P (2017) High-resolution mapping of crossover events in the Hexaploid wheat genome suggests a universal recombination mechanism. Genetics 206:1373–1388.  https://doi.org/10.1534/genetics.116.196014 Google Scholar
  35. Davies B, Hatton E, Altemose N, Hussin JG, Pratto F, Zhang G, Hinch AG, Moralli D, Biggs D, Diaz R, Preece C, Li R, Bitoun E, Brick K, Green CM, Camerini-Otero RD, Myers SR, Donnelly P (2016) Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530:171–176.  https://doi.org/10.1038/nature16931 Google Scholar
  36. de Haas LS, Koopmans R, Lelivelt CLC, Ursem R, Dirks R, Velikkakam James G (2017) Low-coverage resequencing detects meiotic recombination pattern and features in tomato RILs. DNA Res 24:549–558.  https://doi.org/10.1093/dnares/dsx024 Google Scholar
  37. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384.  https://doi.org/10.1371/journal.pgen.1002384 Google Scholar
  38. Demirci S, van Dijk ADJ, Sanchez Perez G, Aflitos SA, de Ridder D, Peters SA (2017) Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. Plant J 89:554–564.  https://doi.org/10.1111/tpj.13406 Google Scholar
  39. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079.  https://doi.org/10.1101/gr.132102 Google Scholar
  40. Drinnenberg IA, Weinberg DE, Xie KT et al (2009) RNAi in budding yeast. Science (80-) 326:544–550.  https://doi.org/10.1126/science.1176945 Google Scholar
  41. Duret L, Marais G, Biémont C (2000) Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics 156:1661–1669Google Scholar
  42. Ecco G, Imbeault M, Trono D (2017) KRAB zinc finger proteins. Development 144:2719–2729.  https://doi.org/10.1242/dev.132605 Google Scholar
  43. Ellermeier C, Higuchi EC, Phadnis N, Holm L, Geelhood JL, Thon G, Smith GR (2010) RNAi and heterochromatin repress centromeric meiotic recombination. Proc Natl Acad Sci U S A 107:8701–8705.  https://doi.org/10.1073/pnas.0914160107 Google Scholar
  44. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368.  https://doi.org/10.1146/annurev.genet.40.110405.090448 Google Scholar
  45. Fowler KR, Sasaki M, Milman N, Keeney S, Smith GR (2014) Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res 24:1650–1664.  https://doi.org/10.1101/gr.172122.114 Google Scholar
  46. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97:11383–11390.  https://doi.org/10.1073/pnas.97.21.11383 Google Scholar
  47. Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7:e1002354.  https://doi.org/10.1371/journal.pgen.1002354 Google Scholar
  48. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776Google Scholar
  49. Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600.  https://doi.org/10.1093/emboj/20.3.589 Google Scholar
  50. Grey C, Baudat F, de Massy B (2018) PRDM9, a driver of the genetic map. PLoS Genet 14:e1007479.  https://doi.org/10.1371/journal.pgen.1007479 Google Scholar
  51. Hartung F, Wurz-Wildersinn R, Fuchs J, Schubert I, Suer S, Puchta H (2007) The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. Plant Cell 19:3090–3099.  https://doi.org/10.1105/tpc.107.054817 Google Scholar
  52. He Y, Wang M, Dukowic-Schulze S, Zhou A, Tiang CL, Shilo S, Sidhu GK, Eichten S, Bradbury P, Springer NM, Buckler ES, Levy AA, Sun Q, Pillardy J, Kianian PMA, Kianian SF, Chen C, Pawlowski WP (2017) Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize. Proc Natl Acad Sci 114:12231–12236.  https://doi.org/10.1073/pnas.1713225114 Google Scholar
  53. Hellsten U, Wright KM, Jenkins J, Shu S, Yuan Y, Wessler SR, Schmutz J, Willis JH, Rokhsar DS (2013) Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci U S A 110:19478–19482.  https://doi.org/10.1073/pnas.1319032110 Google Scholar
  54. Hickman MA, Froyd CA, Rusche LN (2011) Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Eukaryot Cell 10:1183–1192.  https://doi.org/10.1128/EC.05123-11 Google Scholar
  55. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, Muliyati NW, Platt A, Sperone FG, Vilhjálmsson BJ, Nordborg M, Borevitz JO, Bergelson J (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44:212–216.  https://doi.org/10.1038/ng.1042 Google Scholar
  56. Hsieh T-F, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454.  https://doi.org/10.1126/science.1172417 Google Scholar
  57. Hyppa RW, Cromie GA, Smith GR (2008) Indistinguishable landscapes of meiotic DNA breaks in rad50+ and rad50S strains of fission yeast revealed by a novel rad50+ recombination intermediate. PLoS Genet 4:e1000267.  https://doi.org/10.1371/journal.pgen.1000267 Google Scholar
  58. Imbeault M, Helleboid P-Y, Trono D (2017) KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543:550–554.  https://doi.org/10.1038/nature21683 Google Scholar
  59. Jacob Y, Bergamin E, Donoghue MTA, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D, Couture JF, Martienssen RA (2014) Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 343:1249–1253.  https://doi.org/10.1126/science.1248357 Google Scholar
  60. Jacob Y, Stroud H, Leblanc C et al (2010) Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 466:987–991.  https://doi.org/10.1038/nature09290 Google Scholar
  61. Jangam D, Feschotte C, Betrán E (2017) Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet 33:817–831.  https://doi.org/10.1016/j.tig.2017.07.011 Google Scholar
  62. Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217–222.  https://doi.org/10.1038/ng1001-217 Google Scholar
  63. Jensen-Seaman MI, Furey TS, Payseur BA et al (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538.  https://doi.org/10.1101/gr.1970304 Google Scholar
  64. Kapusta A, Suh A, Feschotte C (2017) Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci U S A 114:E1460–E1469.  https://doi.org/10.1073/pnas.1616702114 Google Scholar
  65. Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S (2013) Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 27:873–886.  https://doi.org/10.1101/gad.213652.113 Google Scholar
  66. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384Google Scholar
  67. Kent TV, Uzunović J, Wright SI (2017) Coevolution between transposable elements and recombination. Philos Trans R Soc B Biol Sci 372:20160458.  https://doi.org/10.1098/rstb.2016.0458 Google Scholar
  68. Khil PP, Smagulova F, Brick KM, Camerini-Otero RD, Petukhova GV (2012) Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res 22:957–965.  https://doi.org/10.1101/gr.130583.111 Google Scholar
  69. Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-Schulze S, Sundararajan A, Sun Q, Pillardy J, Mudge J, Chen C, Kianian SF, Pawlowski WP (2018) High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat Commun 9:2370.  https://doi.org/10.1038/s41467-018-04562-5 Google Scholar
  70. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478Google Scholar
  71. Kugou K, Fukuda T, Yamada S, Ito M, Sasanuma H, Mori S, Katou Y, Itoh T, Matsumoto K, Shibata T, Shirahige K, Ohta K (2009) Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Mol Biol Cell 20:3064–3076.  https://doi.org/10.1091/mbc.e08-12-1223 Google Scholar
  72. Kupiec M, Petes TD (1988a) Allelic and ectopic recombination between Ty elements in yeast. Genetics 119(3):549–559Google Scholar
  73. Kupiec M, Petes TD (1988b) Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol Cell Biol 8:2942–2954.  https://doi.org/10.1128/MCB.8.7.2942 Google Scholar
  74. Lam I, Keeney S (2015a) Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science (80-) 350:932–937.  https://doi.org/10.1126/science.aad0814 Google Scholar
  75. Lam I, Keeney S (2015b) Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7:a016634.  https://doi.org/10.1101/cshperspect.a016634 Google Scholar
  76. Lange J, Yamada S, Tischfield SE et al (2016) The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167:695–708.e16.  https://doi.org/10.1016/j.cell.2016.09.035 Google Scholar
  77. Li X, Li L, Yan J (2015) Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat Commun 6:6648.  https://doi.org/10.1038/ncomms7648 Google Scholar
  78. Liu S, Yeh C-T, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733.  https://doi.org/10.1371/journal.pgen.1000733 Google Scholar
  79. Lorković ZJ, Park C, Goiser M, Jiang D, Kurzbauer MT, Schlögelhofer P, Berger F (2017) Compartmentalization of DNA damage response between heterochromatin and euchromatin is mediated by distinct H2A histone variants. Curr Biol 27:1192–1199.  https://doi.org/10.1016/j.cub.2017.03.002 Google Scholar
  80. Lu L, Chen J, Robb SMC, Okumoto Y, Stajich JE, Wessler SR (2017) Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc Natl Acad Sci U S A 114:E10550–E10559.  https://doi.org/10.1073/pnas.1716459114 Google Scholar
  81. Ludin K, Mata J, Watt S, Lehmann E, Bähler J, Kohli J (2008) Sites of strong Rec12/Spo11 binding in the fission yeast genome are associated with meiotic recombination and with centromeres. Chromosoma 117:431–444.  https://doi.org/10.1007/s00412-008-0159-3 Google Scholar
  82. Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389Google Scholar
  83. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485.  https://doi.org/10.1038/nature07135 Google Scholar
  84. Marand AP, Jansky SH, Zhao H, Leisner CP, Zhu X, Zeng Z, Crisovan E, Newton L, Hamernik AJ, Veilleux RE, Buell CR, Jiang J (2017) Meiotic crossovers are associated with open chromatin and enriched with stowaway transposons in potato. Genome Biol 18:203.  https://doi.org/10.1186/s13059-017-1326-8 Google Scholar
  85. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408.  https://doi.org/10.1038/nrg3683 Google Scholar
  86. Maumus F, Quesneville H (2016) Impact and insights from ancient repetitive elements in plant genomes. Curr Opin Plant Biol 30:41–46.  https://doi.org/10.1016/j.pbi.2016.01.003 Google Scholar
  87. McClintock B (1956) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 58–74Google Scholar
  88. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355Google Scholar
  89. Melamed-Bessudo C, Levy AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci U S A 109:E981–E988.  https://doi.org/10.1073/pnas.1120742109 Google Scholar
  90. Mensah MA, Hestand MS, Larmuseau MHD, Isrie M, Vanderheyden N, Declercq M, Souche EL, van Houdt J, Stoeva R, van Esch H, Devriendt K, Voet T, Decorte R, Robinson PN, Vermeesch JR (2014) Pseudoautosomal region 1 length polymorphism in the human population. PLoS Genet 10:e1004578.  https://doi.org/10.1371/journal.pgen.1004578 Google Scholar
  91. Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327.  https://doi.org/10.1146/annurev-arplant-050213-035923 Google Scholar
  92. Mieczkowski PA, Dominska M, Buck MJ, Gerton JL, Lieb JD, Petes TD (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol Cell Biol 26:1014–1027.  https://doi.org/10.1128/MCB.26.3.1014-1027.2006 Google Scholar
  93. Mieczkowski PA, Dominska M, Buck MJ, Lieb JD, Petes TD (2007) Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:3955–3960.  https://doi.org/10.1073/pnas.0700412104 Google Scholar
  94. Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J, Reinders J, Paszkowski J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 109:5880–5885.  https://doi.org/10.1073/pnas.1120841109 Google Scholar
  95. Myers S, Bottolo L, Freeman C et al (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science (80-) 310:321–324.  https://doi.org/10.1126/science.1117196 Google Scholar
  96. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879.  https://doi.org/10.1126/science.1182363 Google Scholar
  97. Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40:1124–1129.  https://doi.org/10.1038/ng.213 Google Scholar
  98. Nambiar M, Smith GR (2018) Pericentromere-specific cohesin complex prevents meiotic pericentric DNA double-strand breaks and lethal crossovers. Mol Cell 71:540–553.e4.  https://doi.org/10.1016/j.molcel.2018.06.035 Google Scholar
  99. Nambiar M, Smith GR (2016) Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 54:188–197.  https://doi.org/10.1016/j.semcdb.2016.01.042 Google Scholar
  100. Odenthal-Hesse L, Berg IL, Veselis A, Jeffreys AJ, May CA (2014) Transmission distortion affecting human noncrossover but not crossover recombination: a hidden source of meiotic drive. PLoS Genet 10:e1004106.  https://doi.org/10.1371/journal.pgen.1004106 Google Scholar
  101. Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SHS, Graber JH, Broman KW, Petkov PM (2008) The Recombinational anatomy of a mouse chromosome. PLoS Genet 4:e1000119.  https://doi.org/10.1371/journal.pgen.1000119 Google Scholar
  102. Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:719–731.  https://doi.org/10.1016/j.cell.2011.02.009 Google Scholar
  103. Platt RN, Blanco-Berdugo L, Ray DA, Ray DA (2016) Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol Evol 8:403–410.  https://doi.org/10.1093/gbe/evw009 Google Scholar
  104. Poriswanish N, Neumann R, Wetton JH, Wagstaff J, Larmuseau MHD, Jobling MA, May CA (2018) Recombination hotspots in an extended human pseudoautosomal domain predicted from double-strand break maps and characterized by sperm-based crossover analysis. PLoS Genet 14:e1007680.  https://doi.org/10.1371/journal.pgen.1007680 Google Scholar
  105. Pratto F, Brick K, Khil P et al (2014) DNA recombination. Recombination initiation maps of individual human genomes. Science 346:1256442.  https://doi.org/10.1126/science.1256442 Google Scholar
  106. Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, Ballinger DG, Przeworski M, Frazer KA, Pääbo S (2005) Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet 37:429–434.  https://doi.org/10.1038/ng1529 Google Scholar
  107. Rizzon C, Marais G, Gouy M, Biémont C (2002) Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res 12:400–407.  https://doi.org/10.1101/gr.210802 Google Scholar
  108. Robine N, Uematsu N, Amiot F, Gidrol X, Barillot E, Nicolas A, Borde V (2007) Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 27:1868–1880.  https://doi.org/10.1128/MCB.02063-06 Google Scholar
  109. Roche B, Arcangioli B, Martienssen RA (2016) RNA interference is essential for cellular quiescence. Science 354:aah5651.  https://doi.org/10.1126/science.aah5651 Google Scholar
  110. Roeder GS (1983) Unequal crossing-over between yeast transposable elements. MGG Mol Gen Genet 190:117–121.  https://doi.org/10.1007/BF00330332 Google Scholar
  111. Salomé PA, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, Yant L, Weigel D (2012) The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb) 108:447–455.  https://doi.org/10.1038/hdy.2011.95 Google Scholar
  112. Sasaki M, Tischfield SE, van Overbeek M, Keeney S (2013) Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae. PLoS Genet 9:e1003732.  https://doi.org/10.1371/journal.pgen.1003732 Google Scholar
  113. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115.  https://doi.org/10.1126/science.1178534 Google Scholar
  114. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862.  https://doi.org/10.1016/j.molcel.2012.11.001 Google Scholar
  115. Shi J, Wolf SE, Burke JM, Presting GG, Ross-Ibarra J, Dawe RK (2010) Widespread gene conversion in centromere cores. PLoS Biol 8:e1000327.  https://doi.org/10.1371/journal.pbio.1000327 Google Scholar
  116. Shilo S, Melamed-Bessudo C, Dorone Y, Barkai N, Levy AA (2015) DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis. Plant Cell 27:2427–2436.  https://doi.org/10.1105/tpc.15.00391 Google Scholar
  117. Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S (2015) Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F 2 plants. New Phytol 206:1491–1502.  https://doi.org/10.1111/nph.13319 Google Scholar
  118. Singhal S, Leffler EM, Sannareddy K et al (2015) Stable recombination hotspots in birds. Science (80-) 350:928–932.  https://doi.org/10.1126/science.aad0843 Google Scholar
  119. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285.  https://doi.org/10.1038/nrg2072 Google Scholar
  120. Smagulova F, Brick K, Pu Y, Sengupta U, Camerini-Otero R, Petukhova GV (2013) Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele. BMC Genomics 14:493.  https://doi.org/10.1186/1471-2164-14-493 Google Scholar
  121. Smagulova F, Brick K, Pu Y, Camerini-Otero RD, Petukhova GV (2016) The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev 30:266–280.  https://doi.org/10.1101/gad.270009.115 Google Scholar
  122. Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV (2011) Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472:375–378.  https://doi.org/10.1038/nature09869 Google Scholar
  123. Song X, Beck CR, Du R et al (2018) Predicting human genes susceptible to genomic instability associated with Alu / Alu -mediated rearrangements. Genome Res 28:1228–1242.  https://doi.org/10.1101/gr.229401.117 Google Scholar
  124. Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:206–216.  https://doi.org/10.1111/j.1365-313X.2006.02867.x Google Scholar
  125. Startek M, Szafranski P, Gambin T, Campbell IM, Hixson P, Shaw CA, Stankiewicz P, Gambin A (2015) Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res 43:2188–2198.  https://doi.org/10.1093/nar/gku1394 Google Scholar
  126. Tiemann-Boege I, Schwarz T, Striedner Y, Heissl A (2017) The consequences of sequence erosion in the evolution of recombination hotspots. Philos Trans R Soc Lond Ser B Biol Sci 372:20160462.  https://doi.org/10.1098/rstb.2016.0462 Google Scholar
  127. Underwood CJ, Choi K, Lambing C, Zhao X, Serra H, Borges F, Simorowski J, Ernst E, Jacob Y, Henderson IR, Martienssen RA (2018) Epigenetic activation of meiotic recombination nearArabidopsis thalianacentromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res 28:519–531.  https://doi.org/10.1101/gr.227116.117 Google Scholar
  128. Underwood CJ, Henderson IR, Martienssen RA (2017) Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr Opin Plant Biol 36:135–141.  https://doi.org/10.1016/j.pbi.2017.03.002 Google Scholar
  129. Vader G, Blitzblau HG, Tame MA, Falk JE, Curtin L, Hochwagen A (2011) Protection of repetitive DNA borders from self-induced meiotic instability. Nature 477:115–119.  https://doi.org/10.1038/nature10331 Google Scholar
  130. Wacholder A, Pollock DD (2017) PRDM9 and an epidemic of gene conversion and non-homologous recombination among Alu elements in ancestral gorillas. bioRxiv 241356. doi:  https://doi.org/10.1101/241356
  131. Wang Y, Copenhaver GP (2018) Meiotic recombination: mixing it up in plants. Annu Rev Plant Biol 69:577–609.  https://doi.org/10.1146/annurev-arplant-042817-040431 Google Scholar
  132. Wijnker E, Velikkakam James G, Ding J, Becker F, Klasen JR, Rawat V, Rowan BA, de Jong DF, de Snoo CB, Zapata L, Huettel B, de Jong H, Ossowski S, Weigel D, Koornneef M, Keurentjes JJB, Schneeberger K (2013) The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. Elife 2:e01426.  https://doi.org/10.7554/eLife.01426 Google Scholar
  133. Winckler W, Myers SR, Richter DJ et al (2005) Comparison of fine-scale recombination rates in humans and chimpanzees. Science 308:107–111.  https://doi.org/10.1126/science.1105322 Google Scholar
  134. Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerrutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880.  https://doi.org/10.1038/nature724 Google Scholar
  135. Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13:1897–1903.  https://doi.org/10.1101/gr.1281503 Google Scholar
  136. Yamada S, Kim S, Tischfield SE, Jasin M, Lange J, Keeney S (2017) Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Cell Cycle 16:1870–1884.  https://doi.org/10.1080/15384101.2017.1361065 Google Scholar
  137. Yamada S, Ohta K, Yamada T (2013) Acetylated histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic Acids Res 41:3504–3517.  https://doi.org/10.1093/nar/gkt049 Google Scholar
  138. Yandeau-Nelson MD, Zhou Q, Yao H, Xu X, Nikolau BJ, Schnable PS (2005) MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 169:917–929.  https://doi.org/10.1534/genetics.104.035089 Google Scholar
  139. Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, Muthurajan UM, Nie X, Kawashima T, Groth M, Luger K, Jacobsen SE, Berger F (2014) The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158:98–109.  https://doi.org/10.1016/j.cell.2014.06.006 Google Scholar
  140. Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8:e1002844.  https://doi.org/10.1371/journal.pgen.1002844 Google Scholar
  141. Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR (2015) DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev 29:2183–2202.  https://doi.org/10.1101/gad.270876.115 Google Scholar
  142. Yue J-X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino MC, Fischer G, Durbin R, Liti G (2017) Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nat Genet 49:913–924.  https://doi.org/10.1038/ng.3847 Google Scholar
  143. Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, Bourc'his D (2015) DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev 29:1256–1270.  https://doi.org/10.1101/gad.257840.114 Google Scholar
  144. Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205.  https://doi.org/10.1016/j.cell.2013.02.033 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.KeyGeneWageningenThe Netherlands
  2. 2.Department of Life SciencesPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations