Advertisement

Chromosoma

pp 1–13 | Cite as

ChIP-cloning analysis uncovers centromere-specific retrotransposons in Brassica nigra and reveals their rapid diversification in Brassica allotetraploids

  • Gui-xiang Wang
  • Qun-yan He
  • Hong Zhao
  • Ze-xi Cai
  • Ning Guo
  • Mei Zong
  • Shuo Han
  • Fan Liu
  • Wei-wei JinEmail author
Original Article

Abstract

Centromeres are indispensable functional units of chromosomes. The evolutionary mechanisms underlying the rapid evolution of centromeric repeats, especially those following polyploidy, remain unknown. In this study, we isolated centromeric sequences of Brassica nigra, a model diploid progenitor (B genome) of the allopolyploid species B. juncea (AB genome) and B. carinata (BC genome) by chromatin immunoprecipitation of nucleosomes containing the centromere-specific histone CENH3. Sequence analysis detected no centromeric satellite DNAs, and most B. nigra centromeric repeats were found to originate from Tyl/copia-class retrotransposons. In cytological analyses, six of the seven analyzed repeat clusters had no FISH signals in A or C genomes of the related diploid species B. rapa and B. oleracea. Notably, five repeat clusters had FISH signals in both A and B subgenomes in the tetraploid B. juncea. In the tetraploid B. carinata, only CL23 displayed three pairs of signals in terminal or interstitial regions of the C-derived chromosome, and no evidence of colonization of CLs onto C-subgenome centromeres was found in B. carinata. This observation suggests that centromeric repeats spread and proliferated between genomes after polyploidization. CL3 and CRB are likely ancient centromeric sequences arising prior to the divergence of diploid Brassica which have detected signals across the genus. And in allotetraploids B. juncea and B. carinata, the FISH signal intensity of CL3 and CRB differed among subgenomes. We discussed possible mechanisms for centromeric repeat divergence during Brassica speciation and polyploid evolution, thus providing insights into centromeric repeat establishment and targeting.

Keywords

Polyploids Brassica Centromere Chromatin immunoprecipitation 

Notes

Authors’ contributions

Jin conceived the research and corrected this manuscript, Wang, He, and Zhao conducted cytogenetic experiments. Cai and Guo analyzed data. Zong, Han, and Liu provide and cultivate the plant materials. Wang wrote the article.

Funding information

This study was supported partially by grants from the Youth Science Research Foundation of Beijing Academy of Agriculture and Forestry Sciences (No. QNJJ2016) and the Natural Science Foundation of China (31000538).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

412_2019_701_MOESM1_ESM.doc (884 kb)
ESM 1 (DOC 884 kb)

References

  1. Beilstein MA, Nagalingum NS, Clements MD, Manchester SR (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:18724–18728CrossRefGoogle Scholar
  2. Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27:2573–2584CrossRefGoogle Scholar
  3. Cheng Z, Dong F, Langdon T, Ouyang S, Robin BC, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704CrossRefGoogle Scholar
  4. Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928CrossRefGoogle Scholar
  5. Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A 95:8135–8140CrossRefGoogle Scholar
  6. Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574CrossRefGoogle Scholar
  7. Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798CrossRefGoogle Scholar
  8. Hall LE, Mitchell SE, O'Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosom Res 20:535–546CrossRefGoogle Scholar
  9. Han J, Masonbrink RE, Shan W, Song F, Zhang J, Yu W, Wang K, Wu Y, Tang H, Wendel JF, Wang K (2016) Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant J 88:992–1005CrossRefGoogle Scholar
  10. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165CrossRefGoogle Scholar
  11. Henikoff S, Dalal Y (2005) Centromeric chromatin: what makes it unique? Curr Opin Genet Dev 15:177–184CrossRefGoogle Scholar
  12. Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283CrossRefGoogle Scholar
  13. Hudakova S, Michalek W, Presting GG, Hoopen R, Santos K, Jasencakova Z, Schubert I (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29:5029–5035CrossRefGoogle Scholar
  14. Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575CrossRefGoogle Scholar
  15. Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581CrossRefGoogle Scholar
  16. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot Jan 95:229–235CrossRefGoogle Scholar
  17. Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW, Hur Y, Lim YP (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173–185CrossRefGoogle Scholar
  18. Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186:801–812CrossRefGoogle Scholar
  19. Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321CrossRefGoogle Scholar
  20. Lamb JC, Theuri J, Birchler JA (2004) What’s in a centromere? Genome Biol 5:239CrossRefGoogle Scholar
  21. Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325Google Scholar
  22. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25CrossRefGoogle Scholar
  23. Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM, Kim SH, Lim YP, Bang JW, Kim HI, Park BS (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cell 19:436–444Google Scholar
  24. Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JK, Kwon SJ, Kim JA, Choi BS, Lim MH, Jin M, Kim HI, Jong H, Bancroft I, Lim YP, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183CrossRefGoogle Scholar
  25. Liu Z, Yue W, Li D, Wang RRC, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456CrossRefGoogle Scholar
  26. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525CrossRefGoogle Scholar
  27. Macas J, Neumann P, Novák P, Jiang J (2010) Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics 26:2101–2108CrossRefGoogle Scholar
  28. Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718CrossRefGoogle Scholar
  29. Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosom Res 13:195–203CrossRefGoogle Scholar
  30. Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770Google Scholar
  31. Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4CrossRefGoogle Scholar
  32. Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131CrossRefGoogle Scholar
  33. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147CrossRefGoogle Scholar
  34. Santos FC, Guyot R, do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela AL (2015) Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosom Res 23:571–582CrossRefGoogle Scholar
  35. Song K, Lu P, Osborn C (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci U S A 92:7719–7723CrossRefGoogle Scholar
  36. Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066CrossRefGoogle Scholar
  37. Tran TD, Cao HX, Jovtchev G, Neumann P, Novák P, Fojtová M, Vu GT, Macas J, Fajkus J, Schubert I, Fuchs J (2015) Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea. Plant J 84:1087–1099CrossRefGoogle Scholar
  38. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Botan 7:389–452Google Scholar
  39. Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561CrossRefGoogle Scholar
  40. Wang G, He Q, Liu F, Cheng Z, Talbert PB, Jin W (2011) Characterization of CENH3 proteins and centromere-associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma 120:353–365CrossRefGoogle Scholar
  41. Wang G, He Q, Macas J, Novák P, Neumann P, Meng D, Zhao H, Guo N, Han S, Zong M, Jin W, Liu F (2017) Karyotypes and distribution of tandem repeat sequences in Brassica nigra determined by fluorescence in situ hybridization. Cytogenet Genome Res 152:158–165CrossRefGoogle Scholar
  42. Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gui-xiang Wang
    • 1
  • Qun-yan He
    • 2
  • Hong Zhao
    • 1
  • Ze-xi Cai
    • 2
  • Ning Guo
    • 1
  • Mei Zong
    • 1
  • Shuo Han
    • 1
  • Fan Liu
    • 1
  • Wei-wei Jin
    • 2
    Email author
  1. 1.Beijing Vegetable Research Center, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina

Personalised recommendations