Advertisement

Mineral–melt partition coefficients and the problem of multiple substitution mechanisms: insights from the rare earths in forsterite and protoenstatite

  • Antony D. BurnhamEmail author
  • Hugh St.C. O’Neill
Original Paper
  • 145 Downloads

Abstract

A trace element may substitute into a mineral by more than one substitution mechanism, complicating the thermodynamic description of its partition coefficients. In order to understand this phenomenon better, the mineral/melt partition coefficients for all 14 rare earth elements (REE) plus Y and Sc were measured experimentally for coexisting forsterite and protoenstatite in the system CaO–MgO–SiO2 ± Al2O3 ± TiO2 at 1406 °C and atmospheric pressure. For both phases, the results show these large trivalent cations (REE3+) replace Mg2+ on octahedral sites, but with charge-balance achieved by two different mechanisms: (1) cation vacancies (2 REE3+ + vacancy = 3 Mg2+); and (2) substitution of Al for Si (REE3+ + Al3+ = Mg2+ + Si4+). The overall REE partition coefficient is the sum of the partition coefficients for each substitution mechanism. Because the stoichiometric control is different for each mechanism, the relative importance of the mechanism varies with melt composition, including the activities of both silica and alumina in the melt (\({{a}}_{{{\text{SiO}}_{ 2} }}^{\text{melt}}\) and \({{a}}_{{{\text{AlO}}_{ 1. 5} }}^{\text{melt}}\)). The coexistence of forsterite and protoenstatite fixes the silica activity, allowing the effect of \({{a}}_{{{\text{AlO}}_{ 1. 5} }}^{\text{melt}}\) to be separated from that of \({{a}}_{{{\text{SiO}}_{ 2} }}^{\text{melt}}\). The relative importance of the two mechanisms depends strongly on the identity of the REE for forsterite, but not for protoenstatite. The results are used to test the lattice strain model: the two substitution mechanisms in forsterite imply different values for the Young’s modulus in the Brice equation, despite the fact that the REE3+ cations likely occupy the same crystallographic site in both mechanisms, casting doubt on the physical basis of the lattice strain theory. Comparison with literature data confirms earlier observations that the activity coefficients of REE2O3 in silicate melts decrease with increasing SiO2 content of the melt, but the effect decreases with increasing atomic number, from La to Lu, and is almost negligible for Sc. The influence of melt composition should apply to the mineral/melt REE partition coefficients of all other minerals. Recognizing that observed mineral/melt partition coefficients are often the sums of contributions from multiple substitution mechanisms, each with its own dependence on both crystal composition and the stoichiometric control from the melt composition, will improve parameterizations of the mineral/melt partition coefficients of other rock-forming minerals. Partition coefficients for Na, Al, Ca, Ti, and Zr are also reported.

Keywords

Partitioning Lattice strain theory Rare earth elements Thermodynamics Pyroxene Olivine 

Notes

Acknowledgements

We thank Jung-Woo Park for assistance with the LA-ICP-MS analyses, Chris Ballhaus for his editorial supervision and Raúl Fonseca for constructive comments on this and earlier drafts of the manuscript. This work was supported by Australian Research Council Laureate Fellowship FL130100066 to HO’N.

References

  1. Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71CrossRefGoogle Scholar
  2. Berry AJ, O’Neill HStC, Hermann J (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261:134–142CrossRefGoogle Scholar
  3. Blasse G, Bril A (1967) Structure and Eu3+-fluorescence of lithium and sodium lanthanide silicates and germanates. J Inorg Nucl Chem 29(9):2231–2241CrossRefGoogle Scholar
  4. Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454CrossRefGoogle Scholar
  5. Boström D (1989) Cation ordering at 1300°C in the (Ni, Mg)-olivine solid-solution series. Acta Chem Scand 43:116–120CrossRefGoogle Scholar
  6. Brice JC (1975) Some thermodynamics aspects of the growth of strained crystals. J Crystal Growth 28:249–253CrossRefGoogle Scholar
  7. Burnham AD, Berry AJ (2014) The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of Ce in silicate melts. Chem Geol 366:52–60CrossRefGoogle Scholar
  8. Burnham AD, Berry AJ (2017) Formation of Hadean granites by melting of igneous crust. Nature Geosci 10:457–461CrossRefGoogle Scholar
  9. Burnham AD, O’Neill HStC (2016) The effect of melt composition on mineral-melt partition coefficients: the case of beryllium. Chem Geol 442:139–147CrossRefGoogle Scholar
  10. Burnham AD, Berry AJ, Halse HR, Schofield PF, Cibin G, Mosselmans JFW (2015) The oxidation state of Eu in silicate melts as a function of oxygen fugacity, composition and temperature. Chem Geol 411:248–259CrossRefGoogle Scholar
  11. Callen HB (1985) Thermodynamics and an Introduction to Thermostatistics, 2nd edn. John Wiley & Sons, Hoboken, NJGoogle Scholar
  12. Colson RO, McKay GA, Taylor LA (1988) Temperature and composition dependencies of trace element partitioning: olivine/melt and low-Ca pyroxene/melt. Geochim Cosmochim Acta 52:539–553CrossRefGoogle Scholar
  13. Colson RO, McKay GA, Taylor LA (1989) Charge balancing of trivalent trace elements in olivine and low-Ca pyroxene: a test using experimental partitioning data. Geochim Cosmochim Acta 53:643–648CrossRefGoogle Scholar
  14. Di Stefano F, Mollo S, Scarlato P, Nazzari M, Bachmann O, Caruso M (2018) Olivine compositional changes in primitive magmatic skarn environments: a reassessment of divalent cation partitioning models to quantify the effect of carbonate assimilation. Lithos 316:104–121CrossRefGoogle Scholar
  15. Dollase WA (1974) A method of determining the distortion of coordination polyhedra. Acta Crystallogr A 30:513–517CrossRefGoogle Scholar
  16. Duffy JA (2005) Polarisability and polarising power of rare earth ions in glass: an optical basicity assessment. Phys Chem Glasses 46:1–6Google Scholar
  17. Evans TM, O’Neill HStC, Tuff J (2008) The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochim Cosmochim Acta 72:5708–5721CrossRefGoogle Scholar
  18. Gibbs GV, Ross NL, Cox DF, Rosso KM, Iversen BB, Spackman MA (2013) Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions. J Phys Chem A 117:1632–1640CrossRefGoogle Scholar
  19. Grant KJ, Wood BJ (2010) Experimental study of the incorporation of Li, Sc, Al and other trace elements into olivine. Geochim Cosmochim Acta 74:2412–2428CrossRefGoogle Scholar
  20. Jarosewich E, Boatner LA (1991) Rare-earth element reference samples for electron microprobe analysis. Geostands Newslett 15:397–399CrossRefGoogle Scholar
  21. Jenner FE, O’Neill HStC (2012) Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem Geophys Geosyst 13:Q03003Google Scholar
  22. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  23. Jollands MC, O’Neill HStC, Hermann J (2014) The importance of defining chemical potentials, substitution mechanisms and solubility in trace element diffusion studies: the case of Zr and Hf in olivine. Contrib Mineral Petrol 168:1055CrossRefGoogle Scholar
  24. Kamenetsky VS, Elburg M, Arculus R, Thomas R (2006) Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas. Chem Geol 233:346–357CrossRefGoogle Scholar
  25. Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Am J Sci 275:411–431CrossRefGoogle Scholar
  26. Leitzke FP, Fonseca RO, Michely LT, Sprung P, Münker C, Heuser A, Blanchard H (2016) The effect of titanium on the partitioning behavior of high-field strength elements between silicates, oxides and lunar basaltic melts with applications to the origin of mare basalts. Chem Geol 440:219–238CrossRefGoogle Scholar
  27. Leitzke FP, Fonseca ROC, Sprung P, Mallmann G, Lagos M, Michely LT, Münker C (2017) Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet Sci Lett 474:503–515CrossRefGoogle Scholar
  28. Lumpkin GR, Ribbe PH (1983) Composition order–disorder and lattice parameters of olivines—relationships in silicate, germanate, beryllate, phosphate and borate olivines. Am Mineral 68:164–176Google Scholar
  29. Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atomic Spectr 11:899–904CrossRefGoogle Scholar
  30. Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL, Gill JB, Williams Q (1994) Compositional controls on the partitioning of U, Th, Ba, Pb, Sr and Zr between clinopyroxene and haplobasaltic melts: implications for uranium series disequilibria in basalts. Earth Planet Sci Lett 128:407–423CrossRefGoogle Scholar
  31. McKay GA (1986) Crystal/liquid partitioning of the REE in basaltic systems: extreme fractionation of the REE in olivine. Geochim Cosmochim Acta 50:69–79CrossRefGoogle Scholar
  32. Michely LT, Leitzke FP, Speelmans IM, Fonseca ROC (2017) Competing effects of crystal chemistry and silicate melt composition on trace element behavior in magmatic systems: insights from crystal/silicate melt partitioning of the REE, HFSE, Sn, In, Ga, Ba, Pt and Rh. Contrib Mineral Petrol 172:39CrossRefGoogle Scholar
  33. Mott NF, Littleton MJ (1938) Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans Faraday Soc 34:485–499CrossRefGoogle Scholar
  34. Nagasawa H (1966) Trace Element Partition Coefficient in Ionic Crystals. Sci 152 (3723):767–769CrossRefGoogle Scholar
  35. Nernst W (1890) Über die Verteilung eines Stoffes zwischen zwei Lösungsmitteln. Nachr K Ges Wiss Göttingen 12:401–416Google Scholar
  36. Nernst W (1891) Verteilung eines Stoffes zwischen zwei Lösungsmitteln und zwischen Lösungsmittel und Dampfraum. Z Phys Chem 8:110–139CrossRefGoogle Scholar
  37. Nielsen RL, Gallahan WE, Newburger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Miner Pet 110:488–499CrossRefGoogle Scholar
  38. O’Neill HStC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181CrossRefGoogle Scholar
  39. O’Neill HStC (2016) The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts. J Petrol 57(8):1463–1508CrossRefGoogle Scholar
  40. Pack A, Russell SS, Shelley MG, van Zuilen M (2007) Geo- and cosmochemistry of the twin elements yttrium and holmium. Geochim Cosmochim Acta 71:4592–4608CrossRefGoogle Scholar
  41. Purton JA, Allan NL, Blundy JD (1997) Calculated solution energies of heterovalent cations in forsterite and diopside: implications for trace element partitioning. Geochim Cosmochim Acta 61:3927–3936CrossRefGoogle Scholar
  42. Schoneveld L, O’Neill HStC (2019) The influence of melt composition on the partitioning of trace elements between anorthite and silicate melt. Contrib Miner Pet 174:13CrossRefGoogle Scholar
  43. Seifert S, O’Neill HStC (1987) Experimental determination of activity-composition relations in Ni2SiO4-Mg2SiO4 and Co2SiO4-Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa. Geochim Cosmochim Acta 51:97–104CrossRefGoogle Scholar
  44. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystall A 32:751–767CrossRefGoogle Scholar
  45. Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystall B 26:1046–1048CrossRefGoogle Scholar
  46. Shaw DM (2006) Trace elements in magmas a theoretical treatment. Cambridge University Press, CambridgeGoogle Scholar
  47. Steele IM, Pluth JJ, Ito J (1978) Crystal structure of synthetic LiScSiO4 olivine and comparison with isotypic Mg2SiO4. Zeits Kristall Crystall Mat 147:119–128Google Scholar
  48. Sun C, Liang Y (2013) The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chem Geol 358:23–36CrossRefGoogle Scholar
  49. Takahashi E, Irvine TN (1981) Stoichiometric control of crystal/liquid single-component partition coefficients. Geochim Cosmochim Acta 45:1181–1185CrossRefGoogle Scholar
  50. Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Miner 25:469–484Google Scholar
  51. van Kan Parker M, Mason PRD, van Westrenen W (2011) Experimental study of trace element partitioning between lunar orthopyroxene and anhydrous silicate melt: effects of lithium and iron. Chem Geol 285:1–14CrossRefGoogle Scholar
  52. Yurimoto H, Sueno S (1987) Anion and cation partitioning between three pyroxenes, chrome spinel phenocrysts and the host boninite magma: an ion microprobe study. Geochem J 21:85–104CrossRefGoogle Scholar
  53. Zhang F, Wright K (2010) Coupled (H+, M3+) substitutions in forsterite. Geochim Cosmochim Acta 74:5958–5965CrossRefGoogle Scholar
  54. Zhukova I, O’Neill HStC, Campbell IH (2017) A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions. Contrib Miner Pet 172:53CrossRefGoogle Scholar
  55. Zou H (2007) Quantitative Geochemistry. Imperial College Press, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research School of Earth SciencesAustralian National UniversityActonAustralia

Personalised recommendations