A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures

  • Renelle DubosqEmail author
  • Anna Rogowitz
  • Kevin Schweinar
  • Baptiste Gault
  • David A. Schneider
Original Paper


The links between deformation-induced micro- and nanostructures and trace element mobility in sulphide minerals have recently become a popular subject of research in the Earth sciences due to its connections with metallic ore paragenesis. It has been shown that plastic deformation in pyrite creates diffusion pathways in the form of low-angle grain boundaries that act as traps for base- and precious-metals. However, the plastic behavior of pyrite and the physiochemical processes that concentrate these trace elements in deformation-induced micro- and nanostructures remain poorly understood. In this study, we develop strategies for 2D and 3D analysis of naturally deformed sulphides by combining electron backscatter diffraction, electron channeling contrast imaging and atom probe tomography on pyrite in an attempt to better understand the underlying diffusion processes that mobilize trace elements. The combined results reveal structures associated with crystal-plastic deformation in the form of dislocations, stacking faults, and low-angle grain boundaries that are decorated by As and Co. Although our data support a dislocation-impurity pair diffusion model, we have evidence that multiple diffusion mechanisms may have acted simultaneously. In this study, we applied new data processing techniques that allow for orientation measurement of nanostructural crystal defects from atom probe tomography data. Dislocations within our studied sample occur along the (110) planes suggesting glide on {110}.


Pyrite Trace-element diffusion EBSD ECCI APT 



This project was funded by Detour Gold Corp., an SEGF student research grant (to RD), a GSA research grant (to RD), an NSERC grant (to DAS) and a postdoctoral award of the FGGA, Vienna (to AR). KS is grateful for financial support from the IMPRS-SURMAT graduate school. We greatly appreciated discussions and technical assistance from Gerlinde Habler (Vienna) and Stefan Zaefferer (Düsseldorf). Uwe Tezins and Andreas Sturm are thanked for their support of the APT and FIB facilities at MPIE. This paper benefitted from the thorough reviews by Denis Fougerouse, Sandra Piazolo, and Steve Reddy as editor.

Supplementary material

410_2019_1611_MOESM1_ESM.docx (11.6 mb)
Supplementary material 1 (DOCX 11,888 kb) (7.1 mb)
Supplementary material 2 (MOV 7267 kb) (7.2 mb)
Supplementary material 3 (MOV 7331 kb) (7.1 mb)
Supplementary material 4 (MOV 7289 kb) (7.2 mb)
Supplementary material 5 (MOV 7340 kb) (7.6 mb)
Supplementary material 6 (MOV 7756 kb) (7.6 mb)
Supplementary material 7 (MOV 7793 kb) (7.5 mb)
Supplementary material 8 (MOV 7731 kb) (7.6 mb)
Supplementary material 9 (MOV 7737 kb) (8.1 mb)
Supplementary material 10 (MOV 8259 kb) (8.1 mb)
Supplementary material 11 (MOV 8246 kb) (8 mb)
Supplementary material 12 (MOV 8234 kb) (8 mb)
Supplementary material 13 (MOV 8195 kb)


  1. Agangi A, Hofman A, Wohlgemuth-Uberwasser CC (2013) Pyrite zoning as a record of mineralization in the Ventersdorp contact reef, Witwatersrand Basin, South Africa. Econ Geol 108:1243–1272CrossRefGoogle Scholar
  2. Ananthakrishna G (2007) Current theoretical approaches to collective behavior of dislocations. Phys Rep 440(4–6):113–259. CrossRefGoogle Scholar
  3. Ando J, Shibata Y, Okajima Y, Kanagawa K, Furusho M, Tomioka N (2001) Striped iron zoning of olivine induced by dislocation creep in deformed peridotites. Nature 414:893–895CrossRefGoogle Scholar
  4. Bachmann F, Hielscher R, Jupp PE, Pantleon W, Schaeben H, Wegert E (2010) Inferential statistics of electron backscatter diffraction data from within individual crystalline grains. J Appl Crystallogr 43:1338–1355CrossRefGoogle Scholar
  5. Barrie CD, Boyle AP, Cox SF, Prior DJ (2008) Slip systems and critical resolved shear stress in pyrite: an electron backscatter diffraction (EBSD) investigation. Mineral Mag 72:1181–1199. CrossRefGoogle Scholar
  6. Barrie CD, Pearce MA, Boyle AP (2011) Reconstructing the pyrite deformation mechanism map. Ore Geol Rev 39(4):265–276. CrossRefGoogle Scholar
  7. Butt MZ, Feltham P (1993) Solid solution hardening. J Mater Sci 28(10):2557–2576. CrossRefGoogle Scholar
  8. Büttner SH, Kasemann SA (2007) Deformation-controlled cation diffusion in tourmaline: a microanalytical study on trace elements and boron isotopes. Am Mineral 92:1862–1874. CrossRefGoogle Scholar
  9. Chihab K, Estrin Y, Kubin LP, Vergnol J (1987) The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy. Scr Metall 21(2):203–208. CrossRefGoogle Scholar
  10. Chouinard A, Paquette J, Williams-Jones AE (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Can Mineral 43:951–963CrossRefGoogle Scholar
  11. Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B (2012) Gold-telluride nanoparticles in arsenic-free pyrite. Am Mineral 97:1515–1518CrossRefGoogle Scholar
  12. Cline JS (2001) Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, Northcentral Nevada. Econ Geol 96:75–89CrossRefGoogle Scholar
  13. Cook NJ, Chryssoulis SL (1990) Concentrations of invisible gold in the common sulphides. Can Mineral 28:1–16Google Scholar
  14. Cottrell AH (1953a) Theory of dislocations. Prog Met Phys 4:205–264. CrossRefGoogle Scholar
  15. Cottrell AH (1953b) A note on the Portevin-Le Chatelier effect. Philos Mag 44(355):829–832. CrossRefGoogle Scholar
  16. Cottrell AH, Bilby BA (1949) Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A 62(1):49–62. CrossRefGoogle Scholar
  17. Couderc JJ, Bras J, Fagot M, Levade C (1980) Etude par microscopie electronique en transmission d’echantillons de blende de diverses provenances. Bull Mineral 103:547–557Google Scholar
  18. Cox SF, Etheridge MA, Hobbs BE (1981) The experimental ductile deformation of polycrystalline and single-crystal pyrite. Econ Geol 76:2105–2117. CrossRefGoogle Scholar
  19. Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18. CrossRefGoogle Scholar
  20. De Geuser F, Gault B (2017) Reflections on the projection of ions in atom probe tomography. Microsc Microanal 23(2):238–246. CrossRefGoogle Scholar
  21. Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE (2008) A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933CrossRefGoogle Scholar
  22. Dubosq R, Lawley CJM, Rogowitz A, Schneider DA, Jackson S (2018) Pyrite deformation and connections to gold mobility: insight from micro-structural analysis and trace element mapping. Lithos 310–311:86–104. CrossRefGoogle Scholar
  23. Emsbo P, Hofstra AH, Lauha EA, Griffin GL, Hutchinson RW (2003) Origin of high-grade gold ore, source of ore fluid components, and genesis of the Miekle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada. Econ Geol 98:1069–1105CrossRefGoogle Scholar
  24. Fisher DS (1998) Collective transport in random media: from superconductors to earthquakes. Phys Rep 301(1):113–150CrossRefGoogle Scholar
  25. Foster AR, Williams PJ, Ryan CG (2007) Distribution of gold in hypogene ore at the Ernest Henry iron oxide copper gold deposit, Cloncurry District, NW Queensland. Explor Min Geol 16:125–143CrossRefGoogle Scholar
  26. Fougerouse D, Micklethwaite S, Halfpenny A, Reddy SM, Cliff JB, Martin LAJ, Kilburn M, Guagliardo P, Ulrich S (2016a) The golden ark: arsenopyrite crystal plasticity and the retention of gold through high strain and metamorphism. Terra Nova 28:181–187. CrossRefGoogle Scholar
  27. Fougerouse D, Reddy SM, Saxey DW, Rickard WDA, van Riessen A, Micklethawaite S (2016b) Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: evidence from atom probe microscopy. Am Mineral 101:1916–1919. CrossRefGoogle Scholar
  28. Fougerouse D, Reddy SM, Kirkland CL, Saxey DW, Rickard WD, Hough RM (2019) Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci Front. CrossRefGoogle Scholar
  29. Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand goldfields the largest gold province in the world. Econ Geol 100th Anniversary 100:769–797Google Scholar
  30. Gaboury D (2013) Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: insight from volatiles in fluid inclusions. Geology 41:1207–1210. CrossRefGoogle Scholar
  31. Gault B, De Geuser F, Stephenson LT, Moody MP, Muddle BC, Ringer SP (2008) Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14(4):296–305. CrossRefGoogle Scholar
  32. Gault B, Moody MP, De Geuser F, Tsafnat G, LaFontaine A, Stephenson LT, Haley D, Ringer SP (2009) Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3):1–10. CrossRefGoogle Scholar
  33. Gault B, Moody MP, Cairney JM, Ringer SP (2012a) Atom probe microscopy. Series in Materials Science. Springer, HeidelbergCrossRefGoogle Scholar
  34. Gault B, Moody MP, Cairney JM, Ringer SP (2012b) Atom probe crystallography. Mater Today 15(9):378–386. CrossRefGoogle Scholar
  35. Gerberich W, Jungk JM, Mook WM (2003) Crack–dislocation interactions. In: Ritchie RO, Karihaloo B, Milne I (eds) Comprehensive structural integrity. Elsevier, Pergamon, pp 357–381CrossRefGoogle Scholar
  36. Graf JL, Skinner BJ, Bras J, Fagot M, Levade C, Couderc JJ (1981) Transmission electron-microscopic observation of plastic deformation in experimentally deformed pyrite. Econ Geol 76:738–742. CrossRefGoogle Scholar
  37. Hähner P, Ziegenbein A, Rizzi E, Neuhäuser H (2002) Spatiotemporal analysis of Portevin–Le Châtelier deformation bands: theory, simulation, and experiment. Phys Rev B 65(13):134109–134128. CrossRefGoogle Scholar
  38. Heitjans P, Karger J (eds) (2005) Diffusion in condensed matter: methods, materials, models. Springer, HeidelbergGoogle Scholar
  39. Herbig M, Choi P, Raabe D (2015) Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153:32–39. CrossRefGoogle Scholar
  40. Humphrey-Baker S (2009) Atomic-scale studies of fusion materials. Dissertation, Oxford UniversityGoogle Scholar
  41. Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits: part I: proton microprobeb analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: comparison with d34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196CrossRefGoogle Scholar
  42. Imai M, Sumino K (1983) In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philos Mag A 47:599–621. CrossRefGoogle Scholar
  43. Kalk A, Schwink C (1992) On sequences of alternate stable and unstable regions along tensile deformation curves. Phys Status Solidi B 172(1):133–144. CrossRefGoogle Scholar
  44. Kalk A, Schwink C (1995) On dynamic strain ageing and the boundaries of stable plastic deformation studied on Cu–Mn polycrystals. Philos Mag A 72(2):315–339. CrossRefGoogle Scholar
  45. Kirkland CL, Fougerouse D, Reddy SM, Hollis J, Saxey DW (2018) Assessing the mechanisms of common Pb incorporation into titanite. Chem Geol 483:558–566. CrossRefGoogle Scholar
  46. Kubin LP, Estrin Y (1985) The Portevin-Le Chatelier effect in deformation with constant stress rate. Acta Metall 33(3):397–407. CrossRefGoogle Scholar
  47. Kwiatkowski da Silva A, Leyson G, Kuzmina M, Ponge D, Herbig M, Sandlöbes S, Gault B, Neugebauer J, Raabe D (2017) Confined chemical and structural states at dislocations in Fe-9 wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater 124:305–315. CrossRefGoogle Scholar
  48. La Fontaine A, Piazolo S, Trimby P, Yang L, Cairney JM (2017) Laser-assisted atom probe tomography of deformed minerals: a zircon case study. Micros Microanal 23(2):1–10. CrossRefGoogle Scholar
  49. Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi log deposit, Lena Gold Province, Russia. Econ Geol 102:1233–1267. CrossRefGoogle Scholar
  50. Larson DJ, Prosa TJ, Geiser Ulfig RM, Kelly TF (2013) Local electrode atom probe tomography: a user’s guide. Springer, HeidelbergCrossRefGoogle Scholar
  51. Legros M, Dehm G, Arzt E, Balk TJ (2008) Observation of giant diffusivity along dislocation cores. Science 319:1646–1649. CrossRefGoogle Scholar
  52. Levade C, Couderc JJ, Bras J, Fagot M (1982) Transmission electron microscopy study of experimentally deformed pyrite. Philos Mag 46:307–325. CrossRefGoogle Scholar
  53. Louat N (1981) On the theory of the Portevin-Le Chatelier effect. Scr Metall 15(11):1167–1170. CrossRefGoogle Scholar
  54. Love GR (1964) Dislocation pipe diffusion. Acta Metall Mater 12(6):731–737. CrossRefGoogle Scholar
  55. Makineni SK, Kumar A, Lenz M, Kontis P, Meiners T, Zenk C, Zaefferer S, Eggler G, Neumeier S, Spiecker E, Raabe D, Gault B (2018a) On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Mater 155:362–371. CrossRefGoogle Scholar
  56. Makineni SK, Lenz M, Neumeier S, Spiecker E, Raabe D, Gault B (2018b) Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scr Mater 157:62–66. CrossRefGoogle Scholar
  57. Makineni SK, Lenz M, Kontis P, Li Z, Kumar A, Felfer PJ, Neumwier S, Herbig M, Spiecker E, Raabe D, Gault B (2018c) Correlative microscopy—novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys. JOM 70:9. CrossRefGoogle Scholar
  58. McClenaghan SH, Lentz DR, Cabri LJ (2004) Abundance and speciation of gold in massive sulfide of the Bathurst mining camp, New Brunswick, Canada. Can Mineral 42:851–871CrossRefGoogle Scholar
  59. McCormick PG (1973) The Portevin-Le Chatelier effect in a pressurized low carbon steel. Acta Metall 21(7):873–878. CrossRefGoogle Scholar
  60. Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z, Sui J (2017) Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 7(13):1–11. CrossRefGoogle Scholar
  61. Mohles V, Rönnpagel D, Nembach E (1999) Simulation of dislocation glide in precipitation hardened materials. Comput Mater Sci 16(1–4):144–150. CrossRefGoogle Scholar
  62. Morey AA, Tomkins AG, Bierlin FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Econ Geol 103:599–614CrossRefGoogle Scholar
  63. Moser DE, Davis WJ, Reddy SM, Flemming RL, Hart RJ (2009) Zircon U–Pb strain chronometry reveals deep impact-triggered flow. Earth Planet Sci Lett 277:77–79. CrossRefGoogle Scholar
  64. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart RJ (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U-Pb and (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48:117–139. CrossRefGoogle Scholar
  65. Muntean JL, Cline JS, Simon AC, Longo AA (2011) Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat Geosci 4:122–127CrossRefGoogle Scholar
  66. Naresh-Kumar G, Hourahine B, Edwards PR, Day AP, Winkelmann A, Wilkinson AJ, Parbrook PJ, England G, Trager-Cowan C (2012) Rapid nondestructive analysis of threading dislocations in wurtzite materials using the scanning electron microscope. Phys Rev Lett 108(13):1–5. CrossRefGoogle Scholar
  67. Naresh-Kumar G, Mauder C, Wang KR, Kraeusel S, Bruckbauer J, Edwards PR, Hourahine B, Kalisch H, Vescan A, Giesen C, Heuken M, Trampert A, Day AP, Trager-Cowan C (2013) Electron channeling contrast imaging studies of non-polar nitrides using a scanning electron microscope. Appl Phys Lett 102:1–4. CrossRefGoogle Scholar
  68. Neuhäuser H (1993) Problems in solid solution hardening. Phys Scr T 49B:412. CrossRefGoogle Scholar
  69. Ohnuma T (2017) First-principles calculation of field evaporation and surface diffusion on BCC Fe (001). Microsc Microanal 23(S1):650–651. CrossRefGoogle Scholar
  70. Oliver J, Ayer J, Dubé B, Aubertin R, Burson M, Panneton G, Friedman R, Hamilton M (2011) Structure, stratigraphy, U–Pb geochronology and alteration characteristics of gold mineralization at the Detour Lake deposit, Ontario, Canada. Explor Min Geol 20:1–30Google Scholar
  71. Palenik CS, Ustunomiya S, Reich M, Kesler SE, Wang L, Ewing RC (2004) “Invisible” gold revealed: direct imagining of gold nanoparticles in a Carlin-type deposit. Am Mineral 89:1359–1366CrossRefGoogle Scholar
  72. Park JS, Kim S, Xie Z, Walsh A (2018) Point defect engineering in thin-film solar cells. Nat Rev Mater 3:194–210. CrossRefGoogle Scholar
  73. Penning P (1972) Mathematics of the Portevin-Le Chatelier effect. Acta Metall 20(10):1169–1175. CrossRefGoogle Scholar
  74. Peterman EM, Reddy SM, Saxey DW, Snoeyenbos DR, Rickard WDA, Fougerouse D, Kylander-Clark ARC (2016) Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops. Sci Adv 2:9. CrossRefGoogle Scholar
  75. Petukhov BV, Klyuchnik PA (2012) Dynamic interaction of dislocations with impurity subsystem in crystalline materials. Crystallogr Rep 57:388–392. CrossRefGoogle Scholar
  76. Piazolo S, Austrheim H, Whitehouse M (2012) Brittle-ductile microfabrics in naturally deformed zircon: deformation mechanisms and consequences for U–Pb dating. Am Mineral 97:1544–1563. CrossRefGoogle Scholar
  77. Piazolo S, La Fontaine A, Trimby P, Harley S, Yang L, Armstrong R, Cairney JM (2016) Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat Comm 7:1–7. CrossRefGoogle Scholar
  78. Plümper O, King H, Vollmer C, Ramasse Q, Jung H, Austrheim H (2012) The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization. Contrib Mineral Petrol 163:701–724. CrossRefGoogle Scholar
  79. Portevin A, Le Chatelier F (1923) Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation. C R Acad Sci Paris 176:507–510Google Scholar
  80. Raabe D, Ponge D, Wang MM, Herbig M, Belbe M, Springer H (2017) 1 billion tons of nanostructure—segregation engineering enables confined transformation effects at lattice defects in steels. IOP Conf Ser Mater Sci Eng 219:012006. CrossRefGoogle Scholar
  81. Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34(4):257–260. CrossRefGoogle Scholar
  82. Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153:625–645. CrossRefGoogle Scholar
  83. Reddy SM, Timms NE, Hamilton PJ, Smyth HR (2009) Deformation-related microstructures in magmatic zircon and implications for diffusion. Contrib Mineral Petrol 157:231–244. CrossRefGoogle Scholar
  84. Reddy SM, van Riessen A, Saxey DW, Johnson TE, Rickard WDA, Fougerouse D, Fischer S, Prosa TJ, Rice KP, Reinhard DA, Chen Y, Olson D (2016) Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochim Cosmochim Acta 195:158–170. CrossRefGoogle Scholar
  85. Reich M, Kesler S, Utsunomiya S, Palenik C, Chryssoulis S, Ewing R (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69(11):2781–2796. CrossRefGoogle Scholar
  86. Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F, Mittermayr F (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim Cosmochim Acta 104:42–62CrossRefGoogle Scholar
  87. Rogowitz A, Zaefferer S, Dubosq R (2018) Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction. Terra Nova 00:1–8. CrossRefGoogle Scholar
  88. Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems: evidence from the Sleeper deposit, Nevada. Geol 18:757–760CrossRefGoogle Scholar
  89. Seebauer EG, Wook Noh K (2010) Trends in semiconductor defect engineering at the nanoscale. Mater Sci Eng R: Rep 70(3–6):151–168. CrossRefGoogle Scholar
  90. Seydoux-Guillaume AM, Fougerouse D, Laurent AT, Gardés E, Reddy SM, Saxey DW (2018) Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: a combined atom probe and transmission electron microscopy study. Geosci Front 10(1):65–76. CrossRefGoogle Scholar
  91. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. CrossRefGoogle Scholar
  92. Shyh-Long H, Pouyan S (1987) Application of anisotropic electron diffraction to determine the displacement vector of stacking fault in pyrite. J Mater Sci Lett 6:1238–1240CrossRefGoogle Scholar
  93. Simon G, Huang H, Penner-Hahn JE, Kesler SE, Kao LS (1999a) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am Mineral 84:1071–1079CrossRefGoogle Scholar
  94. Simon G, Kesler SE, Chryssoulis S (1999b) Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits. Econ Geol 94:405–422CrossRefGoogle Scholar
  95. Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B (2007) In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3):131–139. CrossRefGoogle Scholar
  96. Timms NE, Kinny PD, Reddy SM (2006) Enhanced diffusion of uranium and thorium linked to crystal plasticity in zircon. Geochem Trans 7:10. CrossRefGoogle Scholar
  97. Timms NE, Kinny PD, Reddy SM, Evans K, Clark C, Healy D (2011) Relationship among titanium, rare earth elements, U–Pb ages and deformation microstructures in zircon: implications for Ti-in-zircon thermometry. Chem Geol 280:33–46. CrossRefGoogle Scholar
  98. Timms NE, Reddy SM, Fitz Gerald JD, Green L, Muhling JR (2012) Inclusion-localised crystal-plasticity, dynamic porosity, and fast-diffusion pathway generation in zircon. J Struct Geol 35:78–89. CrossRefGoogle Scholar
  99. Tomkins AG, Mavrogenes JA (2001) Redistribution of gold within arsenopyrite and löllingite during pro- and retrograde metamorphism: application to timing of mineralization. Econ Geol 96:525–534. CrossRefGoogle Scholar
  100. Trimby PW (2012) Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120:16–24CrossRefGoogle Scholar
  101. Van den Beukel A (1980) On the mechanism of serrated yielding and dynamic strain ageing. Acta Metall 28(7):965–969. CrossRefGoogle Scholar
  102. Vukmanovic Z, Reddy SM, Godel B, Barnes SJ, Fiorentini ML, Barnes SJ, Kilburn MR (2014) Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores. Lithos 184–187:42–61. CrossRefGoogle Scholar
  103. Weber S (2018) WinWULFF [computer software]. JCrystalSoft. Retrieved from
  104. Yuan L, Tian M, Lan J, Cao X, Wang X, Chai Z, Gibson JK, Shi W (2018) Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chem Commun 54(4):370–373. CrossRefGoogle Scholar
  105. Zaefferer S, Elhami NN (2014) Theory and application of electron channeling contrast imaging under controlled diffraction conditions. Acta Mater 75(154):20–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of OttawaOttawaCanada
  2. 2.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  3. 3.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  4. 4.Department of Materials, Royal School of MinesImperial College LondonLondonUK

Personalised recommendations