Advertisement

Oxygen fugacity at the base of the Talkeetna arc, Alaska

  • Claire E. BucholzEmail author
  • Peter B. Kelemen
Original Paper
  • 189 Downloads

Abstract

The origin of the more oxidized nature of arc magmas as compared to that of mid-ocean ridge basalts (MORB) is debated, considered to be either a feature of their mantle source, or produced during crustal transit and eruption. Fe3+/FeT ratios (Fe3+/[Fe3+ + Fe2+]) in arc volcanic rocks and glasses and thermodynamic oxybarometry on mantle xenoliths from arc lavas indicate elevated magmatic oxygen fugacity (\(f_{{{\text{O}}_{ 2} }}\)), whereas, redox-sensitive trace elements ratios and abundances in arc volcanic rocks have been used to suggest that arcs have source regions with \(f_{{{\text{O}}_{ 2} }}\) similar to the MORB source. Here, we take an alternative approach by calculating the \(f_{{{\text{O}}_{ 2} }}\) of the uppermost mantle and lowermost ultramafic cumulates from the accreted Jurassic Talkeetna arc (Alaska). This approach allows us to quantify the \(f_{{{\text{O}}_{ 2} }}\) of the sub-arc mantle and of primary arc magmas crystallizing at the base of an island arc, which have not been affected by processes during crustal transit and eruption which could affect their \(f_{{{\text{O}}_{ 2} }}\). Implementing olivine–spinel oxybarometry, we find that the upper mantle (harzburgites and lherzolites) and ultramafic cumulates (clinopyroxenites and dunites) crystallized between + 0.4 and + 2.3 log units above the fayalite-magnetite-quartz buffer, consistent with previous studies suggesting that the sub-arc mantle is oxidized relative to that of MORB. In addition, the Talkeetna paleo-arc allows us to examine coeval lavas and their redox-sensitive trace element ratios (e.g., V/Sc). The average V/Sc ratios of high MgO (> 6 wt%) lavas are 6.7 ± 1.6 (2σ), similar to that of MORB. However, V/Sc ratios must be interpretted in terms the degree of partial melting, as well as, the initial V/Sc ratio of the mantle source in order to derive information about \(f_{{{\text{O}}_{ 2} }}\) of their mantle source. The V/Sc ratios of Talkeetna lavas are consistent with the elevated \(f_{{{\text{O}}_{ 2} }}\) recorded in the sub-arc mantle and primitive cumulates (olivine Mg# [Mg/(Mg + Fe)] × 100 > 82) if a depleted mantle source underwent 15–20% melting. Our results suggest that the arc mantle is, on average, more oxidized than the MORB source and that V/Sc ratios must be interpreted in the context of a partial melting model where all model parameters are appropriate for arc magma genesis. This study reconciles V/Sc ratios in arc volcanic rocks with \(f_{{{\text{O}}_{ 2} }}\) of primary arc basalts and the sub-arc mantle from the same locality.

Keywords

Oxygen fugacity Cumulate Island arc Talkeetna 

Notes

Acknowledgements

Samples used in this study were collected during fieldwork supported by NSF EAR grant #9910899 (PI P. Kelemen). We thank B. Wood for kindly providing spinel standards, C. Lee for sharing his thoughts and insights into modeling V/Sc ratios, conversations with E. Stolper, and C. Ma for assistance with electron microprobe analyses. Thoughtful reviews by T. Sisson and D. Canil helped to clarify and strengthen the manuscript.

Supplementary material

410_2019_1609_MOESM1_ESM.xlsx (174 kb)
Supplementary material 1 (XLSX 174 kb)
410_2019_1609_MOESM2_ESM.docx (1.5 mb)
Supplementary material 2 (DOCX 1495 kb)

References

  1. Adams GE, Bishop FC (1986) The olivine—clinopyroxene geobarometer: experimental results in the CaO–FeO–MgO–SiO2 system. Contrib Mineral Petrol 94(2):230–237CrossRefGoogle Scholar
  2. Amato JM, Rioux ME, Kelemen PB, Gehrels GE, Clift PD, Pavlis TL, Draut AE (2007) U–Pb geochronology of volcanic rocks from the Jurassic Talkeetna Formation and detrital zircons from pre-arc and post-arc sequences: implications for the age of magmatism and inheritance in the Talkeetna arc. Geol Soc Am Spec Pap 431:253–271Google Scholar
  3. Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49(4):665–695CrossRefGoogle Scholar
  4. Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33(1–3):189–208CrossRefGoogle Scholar
  5. Armstrong JT (1995) Citzaf-a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200Google Scholar
  6. Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascades volcanic fields: melts from hot, heterogeneous sub-arc mantle. Can Mineral 35:397–424Google Scholar
  7. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114(3):331–348CrossRefGoogle Scholar
  8. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107(1):27–40CrossRefGoogle Scholar
  9. Barker F, Grantz A (1986) Talkeetna Formation in the south-eastern Talkeetna Mountains, southern Alaska: an Early Jurassic andesitic island arc. Geol Soc Am Abstr Progr 14:147Google Scholar
  10. Barker F, Aleinikoff JN, Box S, Evans BW, Gehrels G, Hill MD, Irving AJ, Kelley JS, Leeman WP, Lull JS, Nockleberg WJ, Pallister JS, Patrick PE, Plafker G, Rubin CM (1994) Some accreted volcanic rocks of Alaska and their elemental abundances. In: Plafker G, Berg HC (eds) The geology of Alaska: Boulder, Colorado, Geological Society of America, Geology of North America, vol G-1, Geological Society of America, Boulder, CO, pp 555–587Google Scholar
  11. Barsdell M, Smith IE (1989) Petrology of recrystallized ultramafic xenoliths from Merelava volcano, Vanuatu. Contrib Miner Petrol 102(2):230–241CrossRefGoogle Scholar
  12. Behn MD, Kelemen PB (2006) Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res Solid Earth 111:B11CrossRefGoogle Scholar
  13. Bell BR, Claydon RV (1992) The cumulus and post-cumulus evolution of chrome-spinels in ultrabasic layered intrusions: evidence from the Cuillin Igneous Complex, Isle of Skye, Scotland. Contrib Mineral Petrol 112(2–3):242–253CrossRefGoogle Scholar
  14. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J petrol 29(2):445–522CrossRefGoogle Scholar
  15. Berry AJ, Stewart GA, O’Neill HSC, Mallmann G, Mosselmans JFW (2018) A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet Sci Lett 483:114–123CrossRefGoogle Scholar
  16. Beyer BJ (1980) Petrology and geochemistry of ophiolite fragments in a tectonic mélange, Kodiak islands, Alaska, Ph.D. thesis, 227, University of California, Santa CruzGoogle Scholar
  17. Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725CrossRefGoogle Scholar
  18. Birner SK, Warren JM, Cottrell E, Davis FA (2016) Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry. Geology 44(7):535–538CrossRefGoogle Scholar
  19. Birner SK, Cottrell E, Warren JM, Kelley KA, Davis FA (2018) Peridotites and basalts reveal broad congruence between two independent records of mantle f O2 despite local redox heterogeneity. Earth Planet Sci Lett 494:172–189CrossRefGoogle Scholar
  20. Blatter DL, Carmichael IS (1998) Hornblende peridotite xenoliths from central Mexico reveal the highly oxidized nature of subarc upper mantle. Geology 26(11):1035–1038CrossRefGoogle Scholar
  21. Bottinga Y, Allegre C (1976) Geophysical, petrological and geochemical models of the oceanic lithosphere. Tectonophysics 32(1–2):9–59CrossRefGoogle Scholar
  22. Brandon AD, Draper DS (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60(10):1739–1749CrossRefGoogle Scholar
  23. Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/∑Fe of Mariana arc basalts and mantle wedge fO2. J Petrol 55(12):2513–2536CrossRefGoogle Scholar
  24. Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8(4):1–24.  https://doi.org/10.1029/2006GC001443 CrossRefGoogle Scholar
  25. Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290(10):1093–1116CrossRefGoogle Scholar
  26. Burns LE (1985) The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22(7):1020–1038CrossRefGoogle Scholar
  27. Burns LE, Pessel GH, Little TA, Pavlis TL, Newberry RJ, Winkler GR, Decker J (1991) Geology of the northern Chugach Mountains, south-central Alaska: Alaska Division of Geological and Geophysical Surveys Professional Report 94Google Scholar
  28. Cameron EN (1975) Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the eastern Bushveld complex. Geochim Cosmochim Acta 39:1021–1033CrossRefGoogle Scholar
  29. Canil D (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389(6653):842–845CrossRefGoogle Scholar
  30. Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: archean to present. Earth Planet Sci Lett 195(1–2):75–90CrossRefGoogle Scholar
  31. Canil D, O'Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37(3):609–635CrossRefGoogle Scholar
  32. Canil D, Fedortchouk Y (2000) Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res Solid Earth 105(B11):26003–26016CrossRefGoogle Scholar
  33. Canil D, O’Neill HSC, Pearson DG, Rudnick RL, McDonough WF, Carswell DA (1994) Ferric iron in peridotites and mantle oxidation states. Earth Planet Sci Lett 123(1–3):205–220CrossRefGoogle Scholar
  34. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106(2):129–141CrossRefGoogle Scholar
  35. Carmichael IS, Ghiorso MS (1990) The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. Rev Min Geochem 24(1):191–212Google Scholar
  36. Carmichael ISE, Nicholls JT, Smith AL (1970) Silica activity in igneous rocks. Am Min 55(1–2):246–263Google Scholar
  37. Christie DM, Carmichael IS, Langmuir CH (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79(3–4):397–411CrossRefGoogle Scholar
  38. Clark SH (1972) The Wolverine complex, a newly discovered layered ultramafic body in the western Chugach Mountains, Alaska. USGS open-file report 72-70Google Scholar
  39. Clark T (1978) Oxide minerals in the Turnagain ultramafic complex, northwestern British Columbia. Can J Earth Sci 15(12):1893–1903CrossRefGoogle Scholar
  40. Clift PD, Draut AE, Kelemen PB, Blusztajn J, Greene A (2005) Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: the Jurassic Talkeetna Volcanic Formation, south-central Alaska. Geol Soc Am Bull 117(7–8):902–925CrossRefGoogle Scholar
  41. Coogan LA, Jenkin GR, Wilson RN (2002) Constraining the cooling rate of the lower oceanic crust: a new approach applied to the Oman ophiolite. Earth Planet Sci Lett 199(1–2):127–146CrossRefGoogle Scholar
  42. Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305(3–4):270–282CrossRefGoogle Scholar
  43. Dalton JA, Lane SJ (1996) Electron microprobe analysis of Ca in olivine close to grain boundaries: the problem of secondary X-ray fluorescence. Am Min 81(1–2):194–201CrossRefGoogle Scholar
  44. Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288(1–2):255–267CrossRefGoogle Scholar
  45. Davis FA, Cottrell E, Birner SK, Warren JM, Lopez OG (2017) Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Am Mineral 102(2):421–435CrossRefGoogle Scholar
  46. DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res Solid Earth 94(B4):4373–4391CrossRefGoogle Scholar
  47. DeBari SM, Greene AR (2011) Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal sections. Arc-continent collision. Springer, Berlin, pp 121–144CrossRefGoogle Scholar
  48. Debari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103(1):37–47CrossRefGoogle Scholar
  49. Dick HJ, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Miner Petrol 86(1):54–76CrossRefGoogle Scholar
  50. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40(3):259–274CrossRefGoogle Scholar
  51. Dohmen R, Faak K, Blundy JD (2017) Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes. Rev Mineral Geochem 83(1):535–575CrossRefGoogle Scholar
  52. Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40(9):783–786CrossRefGoogle Scholar
  53. Gaetani GA (2016) The behavior of Fe3+/Σ Fe during partial melting of spinel lherzolite. Geochimica et cosmochimica Acta 185:64–77CrossRefGoogle Scholar
  54. Greene AR, Debari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47(6):1051–1093CrossRefGoogle Scholar
  55. Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396CrossRefGoogle Scholar
  56. Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD, Luffi P (2008) Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J Geophys Res 113:B03204.  https://doi.org/10.1029/2007JB005208 CrossRefGoogle Scholar
  57. Hacker BR, Kelemen PB, Rioux M, McWilliams MO, Gans PB, Reiners PW, Layer PW, Söderlund U, Vervoort JD (2011) Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm–Nd, and Lu–Hf dating. Tectonics 30(1):TC1011.  https://doi.org/10.1029/2010TC002798 CrossRefGoogle Scholar
  58. Henderson P (1970) The significance of the mesostasis of basic layered igneous rocks. J Petrol 11(3):463–473CrossRefGoogle Scholar
  59. Hirschmann MM (1991) Thermodynamics of multicomponent olivines and the solution properties of (Ni, Mg, Fe)2SiO4 and (Ca, Mg, Fe)2SiO4 olivines. Am Mineral 76:1232–1248Google Scholar
  60. Holness MB, Vukmanovic Z, Mariani E (2017) Assessing the role of compaction in the formation of adcumulates: a microstructural perspective. J Petrol 58(4):643–673CrossRefGoogle Scholar
  61. Humphreys MC (2009) Chemical evolution of intercumulus liquid, as recorded in plagioclase overgrowth rims from the Skaergaard intrusion. J Petrol 50(1):127–145CrossRefGoogle Scholar
  62. Jackson ED (1961) Primary textures and mineral associations in the ultramafic zone of the Stillwater Complex, Montana. Prof Pap US Geol Surv 358:1–106Google Scholar
  63. Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160(3):359–381CrossRefGoogle Scholar
  64. Jagoutz O, Kelemen PB (2015) Role of arc processes in the formation of continental crust. Ann Rev Earth Planet Sci 43:363–404CrossRefGoogle Scholar
  65. Jull M, Kelemen PA (2001) On the conditions for lower crustal convective instability. J Geophys Res: Solid Earth 106(B4):6423–6446CrossRefGoogle Scholar
  66. Jurewicz AJ, Watson EB (1988) Cations in olivine, part 2: diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib Mineral Petrol 99(2):186–201CrossRefGoogle Scholar
  67. Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust. Elsevier, New York, pp 593–659Google Scholar
  68. Kelemen PB, Hanghøj K, Greene A (2014) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 4: the crust, 2nd edn. Pergamon, Oxford, pp 746–805Google Scholar
  69. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607CrossRefGoogle Scholar
  70. Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121CrossRefGoogle Scholar
  71. Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res 111:B09208.  https://doi.org/10.1029/2005JB003732 CrossRefGoogle Scholar
  72. Kerr RC, Tait SR (1986) Crystallization and compositional convection in a porous medium with application to layered igneous intrusions. J Geophys Res Solid Earth 91(B3):3591–3608CrossRefGoogle Scholar
  73. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res Solid Earth 102(B1):853–874CrossRefGoogle Scholar
  74. Köhler TP, Brey G (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54(9):2375–2388CrossRefGoogle Scholar
  75. Kress VC, Carmichael IS (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92CrossRefGoogle Scholar
  76. Kusky TM, Glass A, Tucker R (2007) Structure, Cr-chemistry, and age of the border ranges Ultramafic–Mafic complex: a suprasubduction zone ophiolite complex. Geol Soc Am Spec Pap 431:207Google Scholar
  77. Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278CrossRefGoogle Scholar
  78. Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336CrossRefGoogle Scholar
  79. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468(7324):681–685CrossRefGoogle Scholar
  80. Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin QZ, Jin D (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336(6077):64–68CrossRefGoogle Scholar
  81. Li ZXA, Lee CTA (2004) The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett 228(3–4):483–493Google Scholar
  82. Li J, Kornprobst J, Vielzeuf D, Fabriès J (1995) An improved experimental calibration of the olivine-spinel geothermometer. Chin J Geochem 14(1):68–77CrossRefGoogle Scholar
  83. Lindsley DH, Frost BR (1992) Equilibria among Fe–Ti oxides, pyroxenes, olivine, and quartz: part I. Theory. Am Mineral 77(9–10):987–1003Google Scholar
  84. Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794CrossRefGoogle Scholar
  85. Mallmann G, O’Neill HSC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Petrol 54(5):933–949CrossRefGoogle Scholar
  86. Markl G, Marks M, Wirth R (2001) The influence of T, aSiO2, and fO2 on exsolution textures in Fe–Mg olivine: an example from augite syenites of the Ilimaussaq Intrusion, South Greenland. Am Mineral 86(1–2):36–46CrossRefGoogle Scholar
  87. Mattioli GS, Wood BJ (1988) Magnetite activities across the MgAl2O4–Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib Mineral Petrol 98(2):148–162CrossRefGoogle Scholar
  88. Mehl L, Hacker BR, Hirth G, Kelemen PB (2003) Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J Geophys Res.  https://doi.org/10.1029/2002jb002233 CrossRefGoogle Scholar
  89. Moore JG, Evans BW (1967) The role of olivine in the crystallization of the prehistoric Makaopuhi tholeiitic lava lake, Hawaii. Contrib Mineral Petrol 15(3):202–223CrossRefGoogle Scholar
  90. Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167(6):1015CrossRefGoogle Scholar
  91. Nebel O, Sossi PA, Benard A, Wille M, Vroon PZ, Arculus RJ (2015) Redox-variability and controls in subduction zones from an iron-isotope perspective. Earth Planet Sci Lett 432:142–151CrossRefGoogle Scholar
  92. Newberry RJ, Burns LE, Pessel GH (1986) Volcanogenic massive sulfide deposits and the “missing complement” to the calc-alkaline trend; evidence from the Jurassic Talkeetna island arc of southern Alaska. Econ Geol 81(4):951–960CrossRefGoogle Scholar
  93. Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458CrossRefGoogle Scholar
  94. Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257(9):609–647CrossRefGoogle Scholar
  95. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160(4):409–423CrossRefGoogle Scholar
  96. Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol 39(9):1577–1618CrossRefGoogle Scholar
  97. Parkinson IJ, Arculus RJ, Eggins SM (2003) Peridotite xenoliths from Grenada, Lesser Antilles island arc. Contrib Mineral Petrol 146(2):241–262CrossRefGoogle Scholar
  98. Pavlis TL (1982) Origin and age of the Border Ranges fault of southern Alaska and its bearing on the late Mesozoic tectonic evolution of Alaska. Tectonics 1(4):343–368CrossRefGoogle Scholar
  99. Pavlis TL (1983) Pre-Cretaceous crystalline rocks of the western Chugach Mountains, Alaska: nature of the basement of the Jurassic Peninsular terrane. Geol Soc Am Bull 94:1329–1344CrossRefGoogle Scholar
  100. Plafker G, Nokleberg WJ, Lull JS (1989) Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and southern Copper River Basin, Alaska. J Geophys Res Solid Earth 94(B4):4255–4295CrossRefGoogle Scholar
  101. Presnall DC (1966) The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Am J Sci 264(10):753–809CrossRefGoogle Scholar
  102. Prytulak J, Sossi PA, Halliday AN, Plank T, Savage PS, Woodhead JD (2017) Stable vanadium isotopes as a redox proxy in magmatic systems? Geochem Perspect Lett 3(1):75–84CrossRefGoogle Scholar
  103. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120CrossRefGoogle Scholar
  104. Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45CrossRefGoogle Scholar
  105. Rioux M, Hacker B, Mattinson J, Kelemen P, Blusztajn J, Gehrels G (2007) Magmatic development of an intra-oceanic arc: high-precision U–Pb zircon and whole-rock isotopic analyses from the accreted Talkeetna arc, south-central Alaska. Geol Soc Am Bull 119(9–10):1168–1184CrossRefGoogle Scholar
  106. Rioux M, Mattinson J, Hacker B, Kelemen P, Blusztajn J, Hanghøj K, Gehrels G (2010) Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska: an analogue for low-velocity middle crust in modern arcs. Tectonics 29(3):TC3001.  https://doi.org/10.1029/2009TC002541 CrossRefGoogle Scholar
  107. Roeder PL, Campbell IH (1985) The effect of postcumulus reactions on composition of chrome-spinels from the Jimberlana intrusion. J Petrol 26(3):763–786CrossRefGoogle Scholar
  108. Rose AW (1966) Geology of chromite-bearing ultramafic rocks near Eklutna, Anchorage Quadrangle, Alaska. Alaska Division of Mines and Minerals. Geologic report 18, 1 sheet, scale 1:63,360Google Scholar
  109. Sack RO, Ghiorso MS (1991a) An internally consistent model for the thermodynamic properties of Fe–Mg–titanomagnetite–aluminate spinels. Contrib Mineral Petrol 106:474–505CrossRefGoogle Scholar
  110. Sack RO, Ghiorso MS (1991b) Chromian spinels as petrogenetic indicators: thermodynamic and petrologic applications. Am Mineral 76:827–847Google Scholar
  111. Sack RO, Ghiorso MS (1994a) Thermodynamics of multicomponent pyroxenes I. Formulation of general model. Contrib Mineral Petrol 116:277–286CrossRefGoogle Scholar
  112. Sack RO, Ghiorso MS (1994b) Thermodynamics of multicomponent pyroxenes II. Applications to phase relations in the quadrilateral. Contrib Mineral Petrol 116:287–300CrossRefGoogle Scholar
  113. Sack RO, Ghiorso MS (1994c) Thermodynamics of multicomponent pyroxenes III. Calibration of Fe2+(Mg)−1, TiAl(MgSi)−1, TiFe3+(MgSi)−1, AlFe3+(MgSi)−1, NaAl(CaMg)−1, Al2(MgSi)−1, and Ca(Mg)−1 exchange reactions between pyroxenes and silicate melts. Contrib Mineral Petrol 118:271–296CrossRefGoogle Scholar
  114. Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5(6):447–449CrossRefGoogle Scholar
  115. Shaw DM (1970) Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34(2):237–243CrossRefGoogle Scholar
  116. Shejwalkar A, Coogan LA (2013) Experimental calibration of the roles of temperature and composition in the Ca-in-olivine geothermometer at 0.1 MPa. Lithos 177:54–60CrossRefGoogle Scholar
  117. Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59(1):101–118CrossRefGoogle Scholar
  118. Simkin T, Smith JV (1970) Minor-element distribution in olivine. J Geol 78(3):304–325CrossRefGoogle Scholar
  119. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661CrossRefGoogle Scholar
  120. Sisson TW, Kimura JI, Coombs ML (2009) Basanite–nephelinite suite from early Kilauea: carbonated melts of phlogopite–garnet peridotite at Hawaii’s leading magmatic edge. Contrib Mineral Petrol 158(6):803CrossRefGoogle Scholar
  121. Sparks RSJ, Huppert HE, Kerr RC, McKenzie DP, Tait SR (1985) Postcumulus processes in layered intrusions. Geol Mag 122(5):555–568CrossRefGoogle Scholar
  122. Stolper DA, Bucholz CE (2019) A Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc Natl Acad Sci 116(18):8746–8755CrossRefGoogle Scholar
  123. Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121(3–4):293–325CrossRefGoogle Scholar
  124. Stormer JC Jr (1973) Calcium zoning in olivine and its relationship to silica activity and pressure. Geochimica et Cosmochimica Acta 37(8):1815–1821CrossRefGoogle Scholar
  125. Tait SR, Jaupart C (1992) Compositional convection in a reactive crystalline mush and melt differentiation. J Geophys Res Solid Earth 97(B5):6735–6756CrossRefGoogle Scholar
  126. Tait SR, Huppert HE, Sparks RSJ (1984) The role of compositional convection in the formation of adcumulate rocks. Lithos 17:139–146CrossRefGoogle Scholar
  127. Tang M, Erdman M, Eldridge G, Lee CTA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4(5):eaar4444CrossRefGoogle Scholar
  128. Toth MI (1981) Petrology, geochemistry, and origin of the Red Mountain ultramafic body near Seldovia, Alaska. USGS open-file report 81-514Google Scholar
  129. Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59(1):11–58CrossRefGoogle Scholar
  130. Van Orman JA, Crispin KL (2010) Diffusion in oxides. Rev Mineral Geochem 72(1):757–825CrossRefGoogle Scholar
  131. VanTongeren JA, Kelemen PB, Hanghøj K (2008) Cooling rates in the lower crust of the Oman ophiolite: Ca in olivine, revisited. Earth Planet Sci Lett 267(1–2):69–82CrossRefGoogle Scholar
  132. Voigt M, von der Handt A (2011) Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib Mineral Petrol 162(4):675–689CrossRefGoogle Scholar
  133. Wager LR, Brown GM, Wadsworth WJ (1960) Types of igneous cumulates. J Petrol 1(1):73–85CrossRefGoogle Scholar
  134. Wang J, Xiong X, Takahashi E, Zhang L, Li L, Liu X (2019) Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts. J Geophys Res.  https://doi.org/10.1029/2018JB016731 CrossRefGoogle Scholar
  135. Warren JM (2016) Global variations in abyssal peridotite compositions. Lithos 248:193–219Google Scholar
  136. Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304(5677):1656–1659CrossRefGoogle Scholar
  137. Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235(1–2):435–452CrossRefGoogle Scholar
  138. Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol 23(2):240–292CrossRefGoogle Scholar
  139. Wilson FH, Hults CP, Mull CG, Karl SM (2015) Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet 196 p., 2 sheets, scale 1:1,584,000. http://dx.doi.org/10.3133/sim3340
  140. Wood BJ (1990) An experimental test of the spinel peridotite oxygen barometer. J Geophys Res Solid Earth 95(B10):15845–15851CrossRefGoogle Scholar
  141. Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53(6):1277–1291CrossRefGoogle Scholar
  142. Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114(4):491–504CrossRefGoogle Scholar
  143. Woodland AB, Kornprobst J, Wood BJ (1992) Oxygen thermobarometry of orogenic lherzolite massifs. J Petrol 33(1):203–230CrossRefGoogle Scholar
  144. Woodland AB, Kornprobst J, McPherson E, Bodinier JL, Menzies MA (1996) Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz massif, French Pyrenees. Chem Geol 134(1–3):83–112CrossRefGoogle Scholar
  145. Woodland AB, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89(1–2):222–241CrossRefGoogle Scholar
  146. Zhang HL, Cottrell E, Solheid PA, Kelley KA, Hirschmann MM (2018) Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem Geol 479:166–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA

Personalised recommendations