Fluorine-controlled composition of biotite in granulites of Madagascar: the effect of fluorine on thermometry of biotite–garnet gneisses

  • Bernard MoineEmail author
  • Philippe de Parseval
  • Michel Rakotondrazafy
  • Andrianasolo Ramambazafy
Original Paper


Because of the strong preference of fluorine (F) for “hydrous” magnesian silicate minerals, the temperature T(0F) given by the reaction (Bi–Gt) of Fe–Mg exchange between biotite and garnet [phlogopite (Phl) + almandine (Alm) = annite (Ann) + pyrope (Py)] can be dramatically underestimated when the reciprocal effects between octahedral and hydroxyl site occupancies in biotite are ignored. In the granulites of southeastern Madagascar, widespread Mg metasomatism was associated with F-rich fluids. It is mainly manifested by the regional occurrence of diopside skarns hosting F-phlogopite and thorianite mineralisation. At first, biotite- and garnet-bearing granites and leucogneisses appear unaffected by this event. However, their biotites are rich in F [up to 6 wt%; XF = XF/(F + OH) = 0.69) and in Mg (XMg = Mg/(Mg + Fe) up to 0.8], which shows the tendency of equilibrium with the regional fluids. This equilibration leads to low values of Fe/Mg, which in turn cause strong underestimation of the temperature: T(0F) as low as 500 °C, whereas the temperature T(Ti) given by the TiO2 content of biotite is approximately 750 °C. The slightly modified thermodynamic model of Zhu and Sverjensky (Geochim Cosmochim Acta 56:3435–3467, 1992) for reciprocal solid solution is applied to a set of 19 samples to correct this underestimation and to quantify the effect of F on thermometry. The reciprocal activity coefficients for phlogopite (λ(Phl)) and annite (λ(Ann)) calculated by the model are added to the winTWQ software to obtain corrected values T(F) of the temperature. Similar values of ΔT = T(F) − T(0F) are obtained by (1) the linear fit of the whole set of the samples and (2) RTlnKλ = RTlnλ(Ann) − RTlnλ(Phl) = 33.417XF − 0.1092 (r2 = 0.9994) equation applied to a median sample: ΔT = 30–40, 60–70, 95–100, 160, and 200 °C for XF = 0.1, 0.2, 0.3, 0.5, and 0.7, respectively. The same calculations based on the Thermocalc thermodynamic data set lead to values of ΔT 1.5 times higher than those given by winTWQ. Thus, the results of these calculations confirm (for the first time from a set of natural samples) the validity of the thermodynamic model of reciprocal solid solution and the necessity of accounting for F in thermometry based on Fe–Mg exchanges involving biotite.


Mg–F affinity Biotite–garnet thermometry Fluorine effect Microprobe F analysis Granulites Madagascar 



Financial support for this study was provided by CNRS-UMR5563. A. Ramambazafy received a Grant from the French Government for the preparation of his PhD. Michel Cuney is thanked for his constructive contribution to the early draft. Jean-Emmanuel Martelat is thanked for providing the thin slice used for Fig. 8. Guillaume Siron, an anonymous reviewer and Othmar Müntener as Executive Editor provided helpful comments and suggestions on the manuscript.


  1. Barton MD, Haselton HT Jr, Hemingway BS, Kleppa OJ, Robie RA (1982) The thermodynamic properties of fluor-topaz. Am Mineral 67:350–355Google Scholar
  2. Bazot G (1976) Contribution à l’étude des formations métamorphiques précambriennes du Sud-Est de Madagascar (unpublished). PhD thesis, Clermont-Ferrand Univ, France, p 634Google Scholar
  3. Berman RG (1988) Internally-consistent thermodynamic data from minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation estimation and high temperature extrapolation. J Petrol 29:445–522CrossRefGoogle Scholar
  4. Berman RG (1991) Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. Can Mineral 29:833–855Google Scholar
  5. Berman RG (2007) WinTWQ version 23: a software package for performing internally-consistent thermobarometric calculations. Geol Surv Can Open File 5462:234Google Scholar
  6. Berman RG, Aranovich LY (1996) Optimized standard state and mixing properties of minerals: I Model calibration for olivine orthopyroxene cordierite garnet and ilmenite in the system FeO–MgO–CaO–Al2O3–SiO2–TiO2. Contrib Mineral Petrol 126:1–24CrossRefGoogle Scholar
  7. Berman RG, Aranovich LY, Rancourt DG, Mercier PHJ (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150CrossRefGoogle Scholar
  8. Besairie H (1970) Cartes géologiques à 1/500000: feuilles Fianarantsoa n°7 et Ampanihy n°8. Service Géologique de Madagascar, AntananarivoGoogle Scholar
  9. Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe+2/Fe+3) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018CrossRefGoogle Scholar
  10. Bose S, Fukuoka M, Sengupta P, Dasgupta S (2000) Evolution of high Mg–Al granulites from Sunkarametta Eastern Ghats India: evidence for a lower crustal heating–cooling history. J Metamorph Geol 18:223–240CrossRefGoogle Scholar
  11. Bose S, Das K, Fukuoka M (2005) Fluorine content of biotite in granulite-grade metapelitic assemblages and its implications for the Eastern Ghats granulites. Eur J Mineral 17:665–674CrossRefGoogle Scholar
  12. Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U–Th mineralization Tranomaro Southeast Madagascar. Chem Geol 150:247–262CrossRefGoogle Scholar
  13. Cuney M, Barbey P (2014) Uranium rare metals and granulite-facies metamorphism. Geosci Front 5:729–745CrossRefGoogle Scholar
  14. de La Roche H (1963a) Contribution à l’étude géologique du socle cristallin de Madagascar. Thèse Nancy 1958 Annales Géologiques de Madagascar, vol 28, p 181Google Scholar
  15. de La Roche H (1963) Sur la composition des phlogopites de Madagascar et sur la présence de variétés riches en fluor. Ann Géol Madagascar Fasc XXXIII :175–178Google Scholar
  16. Dooley DF, Patiño Douce E (1996) Fluid-absent melting of F-rich phlogopite + rutile + quartz. Am Mineral 81:202–212CrossRefGoogle Scholar
  17. Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117CrossRefGoogle Scholar
  18. Fialin M, Chopin C (2006) Electron-beam damage in triplite-group phosphates: consequences for electron-microprobe analysis of fluorine. Am Mineral 91:503–510CrossRefGoogle Scholar
  19. GAF-BGR (2008) Final report Explanatory notes for the Anosyen Domain southeast Madagascar Réalisation des travaux de cartographie géologique de Madagascar révision approfondie de la cartographie géologique et minière aux échelles 1/100,000 et 1/500,000 zone Sud. République de Madagascar, Ministère de l‘Energie et des Mines (MEM/SG/DG/UCP/PGRM), p 93Google Scholar
  20. Guidotti VC, Cheney JT, Guggenheim S (1977) Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. Am Mineral 62:438–448Google Scholar
  21. Hawthorne FC, Oberti R, Ungaretti L, Grice JD (1996) A new hyper-calcic amphibole with Ca at the A site: fluor–cannilloite from Pargas Finland. Am Mineral 81:995–1002CrossRefGoogle Scholar
  22. Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of the rock-forming minerals. Am J Sci 278-A:1Google Scholar
  23. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328CrossRefGoogle Scholar
  24. Hensen BJ, Osanai Y (1994) Experimental study of dehydration melting of F-bearing biotite in model pelitic compositions. Mineral Mag 58A:410–411CrossRefGoogle Scholar
  25. Holder RM, Hacker BR, Horton F, Rakotondrazafy AFM (2018) Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high-T orogen. J Metamorph Geol 36:855–880CrossRefGoogle Scholar
  26. Holland TJB (2018) AX62 activity-composition program for minerals. Tim Holland’s AX software page. University of Cambridge, CambridgeGoogle Scholar
  27. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  28. Holland TJB, Powell R (2006) Mineral activity-composition relations and petrological calculations involving cation equipartition in multisite minerals: logical inconsistency. J Metamorph Geol 16:851–861Google Scholar
  29. Holland TJB, Powell R (2011) An improved and internally consistent thermodynamic dataset for phases of petrological interest, inolving a new equation of state for solids. J Metamorph Geol 29:333–383CrossRefGoogle Scholar
  30. Huebner S, Woodruff ME (1985) Chemical compositions and critical evaluation of microprobe standards available in the reston microprobe facility. U.S. Geological Survey, New York, pp 85–718Google Scholar
  31. Jöns N, Schenk V (2011) The ultrahigh temperature granulites of southern Madagascar in polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent. Eur J Mineral 23:127–156CrossRefGoogle Scholar
  32. Lacroix A (1941) Les gisements de phlogopite de Madagascar et les pyroxénites qui les renferment. Annal Géol Serv Mines Madagascar Fasc XI:119Google Scholar
  33. Martelat J-E, Lardeaux J-M, Nicollet C, Rakotondrazafy R (2000) Strain pattern and late Precambrian deformation history in southern Madagascar. Precambrian Res 102:1–20CrossRefGoogle Scholar
  34. Moine B, Rakotondratsima C, Cuney M (1985) Les pyroxénites à urano–thorianite du Sud-Est de Madagascar: conditions physico-chimiques de la métasomatose. Bull Mineral 108:325–340Google Scholar
  35. Moine B, Ramambazafy A, Rakotondrazafy M, Ravolomiandrinarivo B, Cuney M, de Parseval P (1998) The role of fluorine-rich fluids in the formation of the thorianite and sapphire deposits of SE Madagascar. 8th Goldschmidt Conf Miner Mag 62A:999–1000CrossRefGoogle Scholar
  36. Montel JM, Razafimahatratra D, de Parseval P, Poitrasson F, Moine B, Seydoux-Guillaume AM, Pik R, Arnaud N, Gibert F (2018) The giant monazite crystals from Manangotry (Madagascar). Chem Geol 484:36–50CrossRefGoogle Scholar
  37. Moreau M (1963) Le gisement des minéralisations de thorianite à Madagascar. Ann Géol Madagascar Fasc XXXIII:197–202Google Scholar
  38. Motoyoshi Y, Hensen BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex East Antarctica. Am Mineral 86:1404–1413CrossRefGoogle Scholar
  39. Munoz JL (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Rev Mineral 13:469–493Google Scholar
  40. Munoz JL (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geol Soc Am Abstr Prog 26:221Google Scholar
  41. Munoz JL, Ludington SD (1974) Fluorine-hydroxyl exchange in biotite. Am J Sci 274:396–413CrossRefGoogle Scholar
  42. Ottolini L, Cámara F, Bigi S (2000) An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA SIMS and SREF. Am Mineral 85:89–102CrossRefGoogle Scholar
  43. Paquette JL, Nédélec A, Moine B, Rakatondrazafy M (1994) U–Pb single zircon evaporation and Sm–Nd isotopic study of a granulite domain in SE Madagascar. J Geol 102:523–538CrossRefGoogle Scholar
  44. Pattison DRM, Chacko T, Farquhar J, McFarlane CRM (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J Petrol 44:867–900CrossRefGoogle Scholar
  45. Perchuk LL, Aranovich LY (1984) Improvement of the biotite–garnet thermometer: correction for fluorine content in biotite. Dokl Akad Nauk 277:131–135 (in Russian) Google Scholar
  46. Perchuk LL, Aranovich LY, Podlesskii KK, Lavrant’eva IV, Gerasimov VY, Fed’kin VV, Kitsul VI, Karsakov LP, Berdnikov NV (1985) Precambrian granulites of the Aldan shield eastern Siberia USSR. J Metamorph Geol 3:265–310CrossRefGoogle Scholar
  47. Peterson JW, Chacko T, Kuehner SM (1991) The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. Am Mineral 76:470–476Google Scholar
  48. Pili E, Ricard Y, Lardeaux J-M, Sheppard SMF (1997) Lithospheric shear zones and mantle-crust connections. Tectonophysics 280:15–29CrossRefGoogle Scholar
  49. Potts PJ, Tindle AG (1989) Analytical characteristics of a multilayer dispersion element (2d = 60 Å) in the determination of fluorine in minerals by electron microprobe. Mineral Mag 53:357–362CrossRefGoogle Scholar
  50. Rakotondratsima Ch (1983) Les pyroxénites à urano-thorianite du Sud-Est de Madagascar Etude pétrographique minéralogique et géochimique - conséquences métallogéniques (unpublished). PhD thesis, Lyon l Univ, FranceGoogle Scholar
  51. Rakotondrazafy MAF, Moine B, Cuney M (1996) Mode of formation of hibonite (CaAl12O19) within the U–Th skarns from the granulites of SE Madagascar. Contrib Mineral Petrol 123:190–201CrossRefGoogle Scholar
  52. Ramambazafy A (1998) Granites et fluides en relation avec les skarns à thorianite dans les granulites du SE de Madagascar (unpublished). PhD thesis, Paul Sabatier Univ, Toulouse, France, p 302Google Scholar
  53. Ramambazafy A, Moine B, Rakotondrazafy M, Cuney M (1998) Signification des fluides carboniques dans les granulites et les skarns du Sud-Est de Madagascar. CR Acad Sci Paris Ser IIa Sci Terre Planètes 327:743–748Google Scholar
  54. Ramberg H (1952) Chemical bonds and distribution of cations in silicates. J Geol 60:331–355CrossRefGoogle Scholar
  55. Robert J-L, Beny J-M, Della Ventura G, Hardy M (1993) Fluorine in micas: crystal-chemical control of the OH–F distribution between trioctahedral and dioctahedral sites. Eur J Mineral 5:7–18CrossRefGoogle Scholar
  56. Roig JY, Tucker RD, Delor C, Peters SG, Théveniaut H (2012) Carte géologique de la République de Madagascar à 1/1,000,000. Ministère des Mines, PGRM, Antananarivo, République de Madagascar: 1 color sheetGoogle Scholar
  57. Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties for inorganic neutral species. Geochim Cosmochim Acta 53:2157–2184CrossRefGoogle Scholar
  58. Stern WB, Klein HH (1983) Inconsistent chemical data on phlogopite: analyses and genesis of phlogopites from Madagascar. Schweiz Mineral Petrogr Mitt 63:187–202Google Scholar
  59. Stormer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648Google Scholar
  60. Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1995) The effect of fluorine and titanium on the vapor-absent melting of phlogopite and quartz. Mineral Mag 59:566–570CrossRefGoogle Scholar
  61. Touret JLR, Huizenga JM (2011) Fluids in granulites. Geol Soc Am Mem 207:25–37Google Scholar
  62. Tucker RD, Roig J-Y, Macey PH, Delor C, Amelin Y, Armstrong RA, Rabarimanana MH, Ralison AV (2011) A new geological framework for south-central Madagascar and its relevance to the “out-of-Africa” hypothesis. Precambrian Res 185:109–130CrossRefGoogle Scholar
  63. Tucker RD, Roig J-Y, Moine B, Delor C, Peters SG (2014) A geological synthesis of the Precambrian shield in Madagascar. J Afr Earth Sci 94:9–30CrossRefGoogle Scholar
  64. Valley JW, Petersen EU, Essene EJ, Bowman JR (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C–O–H–F fluid compositions. Am Mineral 67:545–557Google Scholar
  65. Vernet M, Marin L, Boulmier S, Lhomme J, Demange JC (1987) Dosage du fluor et du chlore dans les matériaux géologiques y compris les échantillons hyperalumineux. Analusis 15:490–498Google Scholar
  66. Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Mineral 77:1206–1222Google Scholar
  67. Volfinger M, Robert J-L, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49:37–48CrossRefGoogle Scholar
  68. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286CrossRefGoogle Scholar
  69. Witter JB, Kuehner SM (2004) A simple empirical method for high-quality electron microprobe analysis of fluorine at trace levels in Fe-bearing minerals and glasses. Am Mineral 89:57–63CrossRefGoogle Scholar
  70. Wood BJ, Nicholls J (1978) The thermodynamic properties of reciprocal solid solutions. Contrib Mineral Petrol 66:389–400CrossRefGoogle Scholar
  71. Wu C-M, Cheng B-H (2006) Valid garnet–biotite (GB) geothermometry and garnet–aluminum silicate–plagioclase–quartz (GASP) geobarometry in metapelitic rocks. Lithos 89:1–23CrossRefGoogle Scholar
  72. Zhang C, Koepke J, Wang L-X, Wolff PE, Wilke S, Stechern A, Almeev R, Holtz F (2016) A practical method for accurate measurement of trace level fluorine in Mg- and Fe-bearing minerals and glasses using electron probe microanalysis. Geostand Geoanal Res 40:351–363CrossRefGoogle Scholar
  73. Zhu C, Sverjensky DA (1991) Partitioning of F–Cl–OH between minerals and hydrothermal fluids. Geochim Cosmochim Acta 55:1837–1858CrossRefGoogle Scholar
  74. Zhu C, Sverjensky DA (1992) F–Cl–OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bernard Moine
    • 1
    • 4
    Email author
  • Philippe de Parseval
    • 1
    • 2
  • Michel Rakotondrazafy
    • 3
  • Andrianasolo Ramambazafy
    • 5
  1. 1.Université de Toulouse, CNRS, GET, IRD, OMPToulouseFrance
  2. 2.Centre Raimond CastaingToulouseFrance
  3. 3.Département des Sciences de la TerreUniversité d’AntananarivoAntananarivoMadagascar
  4. 4.Saint Paul d’EspisFrance
  5. 5.Montigny le BretonneuxFrance

Personalised recommendations