In situ multiphase U–Pb geochronology and shock analysis of apatite, titanite and zircon from the Lac La Moinerie impact structure, Canada

  • Maree McGregorEmail author
  • Christopher R. M. McFarlane
  • John G. Spray
Original Paper


In situ U–Pb geochronology has been performed via laser ablation inductively coupled mass spectrometry on shocked apatite, titanite and zircon from the ~ 8-km-diameter Lac La Moinerie impact structure, Canada. The three analyzed phases are inherited from target rocks that were transformed to impact melt-bearing breccias and clast-laden impact melts. Apatite yields an array of U–Pb ratios populating a region between a younger regression with a refined age of 453 ± 5 Ma, and an older regression with a lower intercept age of 1708 ± 10 Ma. Titanite defines a younger regression with an age of 444 ± 15 Ma, and an older array with a lower intercept at 1844 ± 24 Ma. Zircon yields an upper intercept age of 1810 ± 13 Ma and a lower intercept age of 433 ± 21 Ma, within error of apatite and titanite. The oldest ages from all three phases define Paleoproterozoic igneous–metamorphic events in granitoid target rocks of the De Pas Suite. Isotopic resetting in apatite and titanite, with relatively high Pb-diffusion rates, was controlled by a combination of proximity to impact-generated superheated melt and the formation of fast diffusion pathways facilitated by shock effects and dynamic recrystallization. Zircon resetting was controlled by shock effects and metamictization, which resulted in significant Pb loss. We outline an approach for discriminating ‘true’ impact ages from metamict zircons with high common Pb that have experienced post-impact Pb loss. Lower intercept ages of all phases constrain the age of formation for the Lac La Moinerie impact structure, with apatite yielding the most precise age of 453 ± 5 Ma. With an age of 453 Ma, Lac La Moinerie joins a growing cluster of more than 12 terrestrial impact structures formed in the Middle-to-Late Ordovician, with potential connection to the L-chondrite parent body breakup event and a period of enhanced bombardment on Earth.


U–Pb geochronology Apatite Titanite Zircon Lac La Moinerie Recrystallized apatite L-chondrite parent body breakup 



This research has been supported by Canada Foundation for Innovation and NSERC Discovery grants to CRMM and JGS. We thank Duff Gold for discussions concerning field geology and sampling, James Darling and Timmons Erickson for providing insightful and constructive reviews, and Daniela Rubatto for editoral handling. PASSC publication 135.

Supplementary material

410_2019_1598_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 99 kb)


  1. Aleinikoff JN, Wintsch RP, Tollo RP, Unruh DM, Fanning CM, Schmitz MD (2007) Ages and origins of rocks of the Killington dome, south-central Connecticut: implications for the tectonic evolution of southern New England. Am J Sci 307:63–118CrossRefGoogle Scholar
  2. Alwmark C, Ferrière L, Holm-Alwmark S, Ormö SJ, Leroux H, Sturkell E (2015) Impact origin for the Hummeln structure (Sweden) and its link to the Ordovician disruption of the L chondrite parent body. Geology 43:279–282CrossRefGoogle Scholar
  3. Anderson T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79CrossRefGoogle Scholar
  4. Bergström SM, Schmitz B, Liu HP, Terfelt F, McKay RM (2018) High-resolution δ13C core chemostratigraphy links the Decorah impact structure and the Winneshiek Konservat- Lagerstatte to the Darriwilian global influx of meteorites. Lethaia 51:504–512CrossRefGoogle Scholar
  5. Bottomley RJ, York D, Grieve RAF (1990) 40Argon–39Argon dating of impact craters. Lunar Plan Sci Conf 20:421–431Google Scholar
  6. Broska I, Harlov D, Tropper P, Siman P (2006) Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribec Mountains, Western Carpathians, Slovakia. Lithos 95:58–71CrossRefGoogle Scholar
  7. Carpenter BN, Carlson R (1997) The Ames meteorite-impact crater. Ames Structure in Northwest Oklahom9pa and Similar Features: Origin and Petroleum Production (1995 Symposium), KS Johnson and J. A. Campbell, Oklahoma Geological Survey, Norman, Oklahoma, vol 100, pp 104–119Google Scholar
  8. Cavosie AJ, Centeno CL (2014) Shocked apatite from the Santa Fe impact structure, (USA): a new mineral for studies of shock metamorphism (abstract #1691). In: 45th Lunar and Planetary Science ConferenceGoogle Scholar
  9. Černok A, White LF, Darling J, Dunlop J, Anand M (2019) Shock-induced microtextures in lunar apatite and merrillite. Meteorit Planet Sci 56(6):1–21Google Scholar
  10. Charette B, Lafrance I, Vanier M-A (2018) Domaine de George, sud-est de la Province de Churchill, Nunavik, Québec, Canada : synthèse de la géologie. In: Ministère de l’Énergie et des Ressources Naturelles, Québec. Bulletin géologique (December)Google Scholar
  11. Cherniak DJ (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110:177–194CrossRefGoogle Scholar
  12. Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Min Geochem 72:827–869CrossRefGoogle Scholar
  13. Chew DM, Petrus JA, Kamber BS (2014) U–Pb LA–ICP–MS dating using accessory mineral standards with variable common Pb. Chem Geol 363:185–199CrossRefGoogle Scholar
  14. Coleman RG, Erd RC (1961) Hydrozircon from the Wind River Formation, Wyoming. USGS Prof Pap 424:297–300Google Scholar
  15. Corrigan D, Wodicka N, McFarlane C, Lafrance I, van Rooyen D, Bandyayera D, Bilodeau C (2018) Lithotectonic Frame work of the Core Zone, Southeastern Churchill Province, Canada. Geosci Can 45:1–24CrossRefGoogle Scholar
  16. Crow CA, McKeegan KD, Moser DE (2017) Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructure analysis of Apollo zircons. Geochim Cosmochim Acta 202:264–284CrossRefGoogle Scholar
  17. D’Amours I, Intissar R (2013) Levé magnétique et spectrométrique aéroporté dans le secteur de la rivière à la Baleine, Province de Churchill. In: Ministère de l’Énergie et des Ressources Naturelles, Québec, DP 2013-03, p 10, with mapsGoogle Scholar
  18. Deer WA, Howie RA, Zussman J (1966) An introduction to the rock-forming minerals. Longman, London, p 528Google Scholar
  19. Earth Impact Database (2019) Accessed 15 Feb 2019
  20. Ewing RC, Weber WJ, Clinard FW (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progress Nucl Ener 29(2):63–127CrossRefGoogle Scholar
  21. Faure G (1991) Principles and applications of inorganic geochemistry. Macmillian Publishing, New YorkGoogle Scholar
  22. French BM, McKay RM, Liu HP, Briggs DEG, Witzke BJ (2018) The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact. Geol Soc Am Bull 130:11–12CrossRefGoogle Scholar
  23. Gold DP, Tanner JG, Halliday DW (1978) The Lac La Moinerie crater: a probable impact site in New Québec. Geol Soc Am 10, Abstract #44Google Scholar
  24. Grahn Y, Ormö J (1995) Microfossil dating of the Brent meteorite crater, southeast Ontario, Canada. Rev Micropaleo 38:131–137Google Scholar
  25. Grahn Y, Nõlvak J, Paris F (1996) Precise chitinozoan dating of Ordovician impact events in Baltoscandia. J Micropal 15:21–35CrossRefGoogle Scholar
  26. Heaman LM (2009) The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52CrossRefGoogle Scholar
  27. Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20:51–54CrossRefGoogle Scholar
  28. Jaret SJ, Hemming SR, Rasbury ET, Thompson LM, Glotch TD, Ramezani JR, Spray JG (2018) Context matters—Ar–Ar results from in and around the Manicouagan Impact Structure, Canada: implications for martian meteorite chronology. Earth Plan Sci Lett 501:78–89CrossRefGoogle Scholar
  29. Jõeleht A, Kirsimäi K, Plado J, Versi E, Ivanov B (2005) Cooling of the Kärdla impact crater: II. Impact and geothermal modeling. Meteorit Planet Sci 40:21–33CrossRefGoogle Scholar
  30. Kenney GG, Karlsson A, Schmieder M, Whitehouse MJ, Nemchin AA, Bellucci JJ (2019) A review of shock-metamorphic features in apatite from terrestrial impact structures and possible implications for extra-terrestrial phosphates. Lunar and Planetary Science Conference 50, LPI Contribution 2132, abstract no. 1357Google Scholar
  31. Kerr JA (1984) Strengths of chemical bonds. In: Weast RC (ed) The handbook of chemistry and physics. CRC Press, Boca Raton, pp 171–181Google Scholar
  32. Kirkland CL, Hollis J, Danišík M, Petersen J, Evans NJ, McDonald BJ (2017) Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the U–Pb geochronology of common Pb bearing phases. Precambr Res 300:107–120CrossRefGoogle Scholar
  33. Kirkland CL, Fougerouse D, Reddy SM, Hollis J, Saxey DW (2018) Assessing the mechanisms of common Pb incorporation into titanite. Chem Geol 483:558–566CrossRefGoogle Scholar
  34. Korochantseva EV, Trieloff M, Lorenz CA, Buykin AI, Ivanova MA, Schwarz WH, Hopp J, Jessberger EK (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorit Planet Sci 42:113–130CrossRefGoogle Scholar
  35. Lafrance I, Simard M, Bandyayera D (2014) Géologie de la région du lac Saffray (SNRC 24G-24F). Ministère de l’Énergie et des Ressources Naturelles, Québec; RG 2014-02, p 49Google Scholar
  36. Lindskog A, Costa MM, Rasmussen CMO, Connelly JN, Eriksson ME (2017) Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nature Commun 8(14066):1–8Google Scholar
  37. Martin E, Schmitz B, Schönlaub HP (2018) From the mid-Ordovician into the Late Silurian: changes in the micrometeorite flux after the L chondrite parent breakup. Meteorit Planet Sci 53(12):2541–2557CrossRefGoogle Scholar
  38. McFarlane CR, Luo Y (2012) U-Pb Geochronology using 193 nm Excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Mod Anal Fac 39:158–172Google Scholar
  39. McGregor M, McFarlane CRM, Spray JG (2018) In situ LA-ICP-MS apatite and zircon U-Pb geochronology of the Nicholson Lake impact structure, Canada: shock and related thermal effects. Earth Planet Sci Lett 504:185–197CrossRefGoogle Scholar
  40. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62(14):2509–2520CrossRefGoogle Scholar
  41. Milstein RL (1988) Impact Origin of the Calvin 28 cryptoexplosive disturbance, Cass County, Michigan. Michigan Department of Natural Resources, Geological Survey Division, Report Investigation, vol 28, pp 1–33Google Scholar
  42. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) isotopic U–Pb (U–Th)/He analysis of the Vredefort Dome. Can J Earth Sci 48:117–139CrossRefGoogle Scholar
  43. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictization of natural zircon: accumulation verses thermal annealing of radioactivity-induced damage. Contrib Miner Petrol 141:125–144CrossRefGoogle Scholar
  44. Ormö J, Sturkell E, Alwmark C, Melosh J (2014) First known terrestrial impact of a binary asteroid from a main belt breakup event. Sci Rep 4:6724CrossRefGoogle Scholar
  45. Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota—geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res Solid Earth 98:13997–14013CrossRefGoogle Scholar
  46. Papapavlou K, Darling JR, Moser DE, Barker IR, White LF, Lightfoot PC, Storey CD, Dunlop J (2018) U-Pb isotopic dating of titanite microstructures: potential implications for the chronology and identification of large impact structures. Contrib Min Pet 173:82CrossRefGoogle Scholar
  47. Paton C, Hellstrom J, Paul JW, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Anal Atom Spectrom 26:2508–2518CrossRefGoogle Scholar
  48. Petrus JA, Kamber BS (2011) VizualAge: a novel approach to laser ablation ICP–MS U–Pb geochronology data reduction. Geostandards Geoanalytical Res 36:247–270CrossRefGoogle Scholar
  49. Schmieder M, Tohver E, Jourdan F, Denyszyn SW, Haines PW (2015) Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochim Cosmochim Acta 161:71–100CrossRefGoogle Scholar
  50. Schmieder M, Shaulis BJ, Lapen TJ, Buchner E, Kring DA (2019) In situ U–Pb analysis of shocked zircon from the Charlevoix impact structure, Québec, Canada. Meteorit Planet Sci 54:1–20. CrossRefGoogle Scholar
  51. Schmitz B, Harper DAT, Peucker-Ehrenbrink B, Stouge S, Alwmark C, Cronholm A, Bergströ SM, Tassinari M, Xiaofeng W (2008) Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nat Geosci 1:49–53CrossRefGoogle Scholar
  52. Servais T, Harper DAT (2018) The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration. Lethaia. 51:151–164CrossRefGoogle Scholar
  53. Sharpton VL, Copeland P, Dressler BO, Spell TL (1997) New age constraints on the Slate Islands impact structure, Lake Superior, Canada (abstract). Lunar Planet Sci XXVIII 1287–1288:1997Google Scholar
  54. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  55. Spandler C, Hammerli J, Sha P, Wolf HH, Hu Y, Roberts E, Schmitz M (2016) MKED1: a new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology. Chem Geol 425:110–126CrossRefGoogle Scholar
  56. Spray JG, Rae DA (1995) Quantitative electron-microprobe analysis of alkali silicate glasses: a review and user guide. Can Mineral 33:323–332Google Scholar
  57. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  58. Steiger RH, Jäger E (1977) Submission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Plan Sci Lett 36:359–362CrossRefGoogle Scholar
  59. Stöffler D, Artiemeva NA, Wünneman K, Reimold WU, Jacobs J, Hansen BK, Summerson IA (2013) Ries crater and suevites revisited—observation and modeling. Part 1: observations. Meteor Plan Sci 48:515–589CrossRefGoogle Scholar
  60. Thomas MD, Halliday DW, Stephenson R (1978) Gravity anomalies and geological structure in Northern Labrador and Northeastern Québec. Gravity Service of Canada. Dep. Energy, Mines and Resources, vol 157-161, p 38Google Scholar
  61. Thompson LM, Spray JG (2017) Dynamic interaction between impact melt and fragmented basement at Manicouagan: the suevite connection. Meteorit Plan Sci. 52:1300–1329CrossRefGoogle Scholar
  62. Thomson SN, Gehrels GE, Ruiz J (2012) Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem Geophys Geosyst 13:1–23CrossRefGoogle Scholar
  63. Timms NE, Erickson TM, Pearce MA, Cavosie AJ, Schmieder M, Tohver E, Reddy SM, Zanetti MR, Nemchin AA, Wittmann A (2017) A pressure–temperature phase diagram for zircon at extreme conditions. Earth Sci Rev 165:185–202CrossRefGoogle Scholar
  64. Timms NE, Pearce MA, Erickson TM, Cavosie AJ, Rae ASP, Wheeler J, Wittman A, Ferriére L, Poelchau MH, Tomiokoa N, Collins GS, Gulick SPS, Rasmussen C, Morgan JV, IODP-ICDP Expedition 364 Scientists (2019) New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico. Contrib Min Pet 174:38CrossRefGoogle Scholar
  65. Vishnevsky S, Montanari A (1999) Popigai impact structure (Arctic Siberia, Russia): geology, petrology, geochemistry, and geochronology of glass-bearing impactites. Geol Soc Am Spec Pap 339:19–43Google Scholar
  66. Walker JD, Geisman JW, Bowring SA, Babcock LE (2018) Geologic Time Scale v. 5.0. Geol Soc Am Accessed 15 Feb 2019
  67. Wanless RK, Stevens RD, Lachance GR, Delabio RN (1970) Age determinations and geological studies: K–Ar isotopic ages. Geol Surv Can Dep Rep 9:74–82Google Scholar
  68. Wardle RJ, James DT, Scott DJ, Hall J (2002) The southeastern Churchill Province: synthesis of a Paleoproterozoic transpressional orogeny. Can Jour Earth Sci 39:639–663CrossRefGoogle Scholar
  69. Whitehead J, Spray JG, Grieve RAF (2002) The origin of “toasted” quartz in terrestrial impact structures. Geology 30:431–434CrossRefGoogle Scholar
  70. Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteorit Planet Sci 454:433–454CrossRefGoogle Scholar
  71. Zappala V, Cellino A, Gladman BJ, Manley S, Migliorini F (1998) Asteroid showers on Earth after family breakup events. Icarus 134:176–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Planetary and Space Science CentreUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Earth SciencesUniversity of New BrunswickFrederictonCanada

Personalised recommendations