H2O–CO2 solubility in alkali-rich mafic magmas: new experiments at mid-crustal pressures

  • Chelsea M. AllisonEmail author
  • Kurt Roggensack
  • Amanda B. Clarke
Original Paper


Volatile solubility in magmas depends on several factors, including composition and pressure. Mafic magmas with high concentrations of alkali elements are capable of dissolving larger quantities of H2O and CO2 than subalkaline basalt, which possibly contributes to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below ~ 200 MPa, but at greater pressures the experimental data are sparse. To fill in this gap, we conducted a set of mixed H2O–CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents (Stromboli, Etna, Vesuvius, Erebus, Sunset Crater, and the San Francisco Volcanic Field). Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated ranges, do not accurately describe CO2 solubility at mid-crustal pressures. We adapt an existing thermodynamic model to reflect our higher-pressure experimental data by determining model parameters \(\Delta {\text{V}}_{r}^{0,m}\) (partial molar volume change of CO2 reaction) and K0 (equilibrium constant) for each studied composition. In these compositions, \(\Delta {\text{V}}_{r}^{0,m}\) is found to vary between ~ 15 and ~ 25 cm3 mol−1, while ln K0 ranges from − 14.9 to − 14.0. The calculated solubility curves show good agreement with CO2 solubility data from the experiments and provide a more accurate description of CO2 solubility than purely empirical fits. These new experiments indicate while CO2 solubility is increased in alkali-rich mafic magmas, it is not simply controlled by total alkali content but rather the full multicomponent magma composition.


Volatile solubility Basaltic explosive volcanism Alkali basalts Stromboli Etna Erebus 



This work was supported by the National Science Foundation Grants EAR-1322078 and EAR-1642569. We are grateful to Jake Lowenstern (United States Geological Survey), Ken Domanik (University of Arizona), and Kurt Leinenweber (ASU) for assistance with analytical instruments and other equipment. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at ASU. We thank two reviewers and editor Mark Ghiorso for their comments to improve this manuscript.

Supplementary material

410_2019_1592_MOESM1_ESM.pdf (885 kb)
Supplementary material 1 (PDF 884 kb)
410_2019_1592_MOESM2_ESM.xlsx (1.4 mb)
Supplementary material 2 (XLSX 1483 kb)
410_2019_1592_MOESM3_ESM.m (3 kb)
Supplementary material 3 (M 3 kb)
410_2019_1592_MOESM4_ESM.m (2 kb)
Supplementary material 4 (M 1 kb)


  1. Alfano F, Ort MH, Pioli L, Self S, Hanson SL, Roggensack K, Allison CM, Amos R, Clarke AB (2018) Subplinian monogenetic basaltic eruption of Sunset Crater, Arizona, USA. Geol Soc Am Bull 131:661–674. CrossRefGoogle Scholar
  2. Allison CM (2018) Highly explosive mafic volcanism: the role of volatiles. Ph.D. thesis, Arizona State UniversityGoogle Scholar
  3. Amos RC (1986) Sunset Crater, Arizona: evidence for a large magnitude Strombolian eruption. M.S. thesis, Arizona State UniversityGoogle Scholar
  4. Aster EM, Wallace PJ, Moore LR, Watkins J, Gazel E, Bodnar RJ (2016) Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J Volcanol Geotherm Res 323:148–162. CrossRefGoogle Scholar
  5. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa. Am Mineral 94:105–120. CrossRefGoogle Scholar
  6. Blackburn EA, Wilson L, Sparks RSJ (1976) Mechanisms and dynamics of Strombolian activity. J Geol Soc (Lond UK) 132:429–440CrossRefGoogle Scholar
  7. Blake S (1984) Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J Geophys Res 89:8237–8244CrossRefGoogle Scholar
  8. Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, vol 30. Mineralogical Society of America, Washington, pp 157–186CrossRefGoogle Scholar
  9. Botcharnikov R, Freise M, Francois H, Behrens H (2005a) Solubility of C–O–H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646Google Scholar
  10. Botcharnikov RE, Koepke J, Holtz F, McCammon C, Wilke M (2005b) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69:5071–5085. CrossRefGoogle Scholar
  11. Cimarelli C, Di Traglia F, Taddeucci J (2010) Basaltic scoria textures from a zoned conduit as precursors to violent Strombolian activity. Geology 38:439–442. CrossRefGoogle Scholar
  12. Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26:1095–1098CrossRefGoogle Scholar
  13. Coltelli M, Del Carlo P, Vezzoli L (2000) Stratigraphic constraints for explosive activity in the past 100 ka at Etna volcano, Italy. Int J Earth Sci 89:665–677. CrossRefGoogle Scholar
  14. Dixon JE (1997) Degassing of alkalic basalts. Am Mineral 82:368–378CrossRefGoogle Scholar
  15. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342CrossRefGoogle Scholar
  16. Dixon JE, Stolper EM (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J Petrol 36(6):1633–1646Google Scholar
  17. Dixon JE, Stolper E, Delaney JR (1988) Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet Sci Lett 90:87–104CrossRefGoogle Scholar
  18. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36(6):1607–1631Google Scholar
  19. Duan X (2014) A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim Cosmochim Acta 125:582–609. CrossRefGoogle Scholar
  20. Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentration and speciation. Earth Planet Sci Lett 76:263–278CrossRefGoogle Scholar
  21. Ghiorso MS, Gualda GAR (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol 169:53. CrossRefGoogle Scholar
  22. Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120–131. CrossRefGoogle Scholar
  23. Hess KU, Dingwell DD (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300. CrossRefGoogle Scholar
  24. Holloway JR (1981) Volatile interactions in magmas. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of minerals and melts. Springer, New York, pp 273–293CrossRefGoogle Scholar
  25. Holloway JR (1987) Igneous fluids. Rev Mineral Geochem 17(1):211–232Google Scholar
  26. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, vol 30. Mineralogical Society of America, Washington, pp 187–230CrossRefGoogle Scholar
  27. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23. CrossRefGoogle Scholar
  28. Iacovino K, Moore G, Roggensack K, Oppenheimer C, Kyle P (2013) H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica. Contrib Mineral Petrol 166:845–860. CrossRefGoogle Scholar
  29. Iacovino K, Oppenheimer C, Scaillet B, Kyle P (2016) Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island, Antarctica. J Petrol 57(1):93–118. CrossRefGoogle Scholar
  30. Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140CrossRefGoogle Scholar
  31. King PL, Holloway JR (2002) CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition. Geochim Cosmochim Acta 66(9):1627–1640CrossRefGoogle Scholar
  32. Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Beny JM (2011a) The H2O solubility of alkali basalts: an experimental study. Contrib Mineral Petrol 162(1):133–151. CrossRefGoogle Scholar
  33. Lesne P, Scaillet B, Pichavant M, Beny JM (2011b) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162(1):153–168. CrossRefGoogle Scholar
  34. Lowenstern JB (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids and ore deposition, vol 23. Mineralogical Association of Canada, Short Course, Quebec, pp 71–99Google Scholar
  35. Luhr JF (2001) Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Conrib Mineral Petrol 142:261–283. CrossRefGoogle Scholar
  36. Mandeville CW, Webster JD, Rutherford MJ, Taylor BE, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87:813–821. CrossRefGoogle Scholar
  37. Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87:15–28CrossRefGoogle Scholar
  38. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing, and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626. CrossRefGoogle Scholar
  39. Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes, vol 69. Mineralogical Society of America, Washington, pp 333–361. CrossRefGoogle Scholar
  40. Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319CrossRefGoogle Scholar
  41. Moore G, Roggensack K, Klonowski S (2008) A low-pressure–high-temperature technique for the piston-cylinder. Am Mineral 93:48–52. CrossRefGoogle Scholar
  42. Moore LR, Gazel E, Tuohy R, Lloyd AS, Esposito R, Steele-MacInnis M, Hauri EH, Wallace PJ, Plank T, Bodnar RJ (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Mineral 100:806–823. CrossRefGoogle Scholar
  43. Moretti R, Métrich N, Arienzo I, Di Renzo V, Aiuppa A, Allard P (2018) Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions. Chem Geol 482:1–17. CrossRefGoogle Scholar
  44. Mysen BO (1976) The role of volatiles in silicate melts: solubility of carbon dioxide and water in feldspar, pyroxene, and feldspathoid melts to 30 kb and 1625 °C. Am J Sci 276:969–996CrossRefGoogle Scholar
  45. Mysen BO, Virgo D, Kushiro I (1981) The structural role of aluminum in silicate melts–a Raman spectroscopic study at 1 atmosphere. Am Mineral 66:678–701Google Scholar
  46. Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604. CrossRefGoogle Scholar
  47. Nichols ARL, Wysoczanski RJ (2007) Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem Geol 242:371–384. CrossRefGoogle Scholar
  48. Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317CrossRefGoogle Scholar
  49. Ohlhorst S, Behrens H, Holtz F (2001) Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem Geol 174:5–20. CrossRefGoogle Scholar
  50. Pan V, Holloway JR, Hervig RL (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim Cosmochim Acta 55:1587–1595CrossRefGoogle Scholar
  51. Papale P, Polacci M (1999) Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions. Bull Volcanol 60:583–594CrossRefGoogle Scholar
  52. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95. CrossRefGoogle Scholar
  53. Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J Petrol 50(4):601–624. CrossRefGoogle Scholar
  54. Pichavant M, Scaillet B, Pommier A, Iacono-Marziano G, Cioni R (2014) Nature and evolution of primitive Vesuvius magmas: an experimental study. J Petrol 55(11):2281–2310. CrossRefGoogle Scholar
  55. Pyle DM, Pyle DL (1995) Bubble migration and the initiation of volcanic eruptions. J Volcanol Geotherm Res 67:227–232CrossRefGoogle Scholar
  56. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300. CrossRefGoogle Scholar
  57. Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354. CrossRefGoogle Scholar
  58. Saxena SK, Fei Y (1987) High pressure and high temperature fluid fugacities. Geochim Cosmochim Acta 51:783–791CrossRefGoogle Scholar
  59. Schrader B (1995) Infrared and Raman spectroscopy: methods and applications. VCH, WeinheimCrossRefGoogle Scholar
  60. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500MPa. Chem Geol 277:115–125. CrossRefGoogle Scholar
  61. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Jazwa AM, Jakubiak AA (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem Geol 388:112–129. CrossRefGoogle Scholar
  62. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37CrossRefGoogle Scholar
  63. Spera FJ, Bergman SC (1980) Carbon dioxide in igneous petrogenesis: i. aspects of the dissolution of CO2 in silicate liquids. Contrib Mineral Petrol 74:55–66CrossRefGoogle Scholar
  64. Stolper E, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408CrossRefGoogle Scholar
  65. Stolper E, Fine G, Johnson T, Newman S (1987) Solubility of carbon dioxide in albitic melt. Am Mineral 72:1071–1085Google Scholar
  66. Taddeucci J, Pompilio M, Scarlato P (2004) Conduit processes during the July–August 2001 explosive activity of Mt. Etna (Italy): inferences from glass chemistry and crystal size distribution of ash particles. J Volcanol Geotherm Res 137:33–54. CrossRefGoogle Scholar
  67. Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224CrossRefGoogle Scholar
  68. Vetere F, Holtz F, Behrens H, Botcharnikov RE, Fanara S (2014) The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts. Contrib Mineral Petrol 167:1014. CrossRefGoogle Scholar
  69. Von Aulock FW, Kennedy BM, Schipper CI, Castro JM, Martin DE, Oze C, Watkins JM, Wallace PJ, Puskar L, Bégué F, Nichols ARL, Tuffen H (2014) Advance in Fourier transform infrared spectroscopy of natural glasses: from sample preparation to data analysis. Lithos 206–207:52–64. CrossRefGoogle Scholar
  70. Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics, vol No 76. Geological Society Special Publication, London, pp 3–38Google Scholar
  71. Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8:297–313CrossRefGoogle Scholar
  72. Wilson L, Head JW III (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Volcanol Geotherm Res 86:2971–3001Google Scholar
  73. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions – IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J Int 63:117–148. CrossRefGoogle Scholar
  74. Witham F, Blundy J, Kohn SC, Lesne P, Dixon J, Churakov SV, Botcharnikov R (2012) SolEx: a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput Geosci 45:87–97. CrossRefGoogle Scholar
  75. Woods AW, Cardoso SSS (1997) Triggering basaltic volcanic eruptions by bubble-melt separation. Nature 385:518–520CrossRefGoogle Scholar
  76. Wyllie PJ, Tuttle OF (1959) Effect of carbon dioxide on the melting of granite and feldspars. Am J Sci 257:618–655CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaSezione di PisaItaly

Personalised recommendations