Advertisement

Point defect populations of forsterite revealed by two-stage metastable hydroxylation experiments

  • Charles Le LosqEmail author
  • Michael C. Jollands
  • Peter M. E. Tollan
  • Rhys Hawkins
  • Hugh St. C. O’Neill
Original Paper

Abstract

Hydroxylation is a method that allows “decoration” of the pre-existing point defect structure of nominally anhydrous minerals, such as olivine. We tested this method on synthetic forsterite (Fo:\({\text{Mg}}_{2} {\text{SiO}}_{4}\)) crystals. To control starting point defect structures, Fo crystals were pre-annealed at different temperatures (\(1100{-}1500\,{^\circ }{\text{C}}\)), silica activity conditions (forsterite–enstatite Fo–En and forsterite–periclase Fo–Per) and oxygen fugacity (0.21 and \(10^{-6}\) bars). Then low-temperature hydroxylation (900 °C, 1.5 GPa) of the crystals successfully allowed the decoration with protons of pre-existing point defect structures, as subsequently revealed by infrared spectroscopy. Protons are arranged in three different point defect stoichiometries in Fo, related to Mg and Si vacancies ([Mg] and [Si], respectively) as well as to a trivalent cation-associated substitution mechanism ([triv]). Over the timescale and equilibrium conditions studied, hydroxylation does not reset the point defect structure inherited from pre-anneal. The data further show that the concentrations of [Mg]-, [Si]- and [triv]-hydrated defects are function of pre-anneal silica activity and temperature. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis of the crystals revealed diffusion of Al and Fe into the crystals during the pre-annealing, a phenomenon clearly promoted at high \({\text{a}}_{{{\text{SiO}}_{2} }}\). The data confirm a very fast mechanism of Al diffusion in Fo during pre-annealing, and suggest a strong coupling between \({\text{H}}^{+}\) and \({\text{Al}}^{3+}\) during hydroxylation. Overall, they show the strong importance of \({\text{a}}_{{{\text{SiO}}_{2} }}\) and temperature in the incorporation of trace cations in forsterite, and the subsequent effects of incorporation of trace cations on Mg- and Si-related point defects in Fo. The dry point defect population of Fo is determined by interactions between the trace trivalent cations and dry Si and Mg vacancies. Without trace elements, T only has a limited effect on Mg- and Si-related point defect populations. Finally, approaching or potentially slightly exceeding the Fo–En solidus leads to strong changes in the trace element concentration and point defect population in Fo, which may be related to either partial melting or pre-melting effects.

Keywords

Forsterite Infrared Hydroxylation Water Point defects Trivalent Aluminium Iron 

Notes

Acknowledgements

Funding by the ARC Laureate Fellowship FL130100066 to Hugh O’Neill is acknowledged. The authors thank one anonymous reviewer and Jed Mosenfelder for their reviews that substantially improved the manuscript. CLL thanks U. Troitzsch for XRD analysis of the buffer powders, as well as U. Faul (MIT) and I. Jackson (RSES) for helpful discussions on the present topic.

Supplementary material

410_2019_1590_MOESM1_ESM.pdf (330 kb)
Supplementary material 1 (PDF 330 kb)
410_2019_1590_MOESM2_ESM.csv (8 kb)
Supplementary material 2 (CSV 9 kb)

References

  1. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19(7):460–471CrossRefGoogle Scholar
  2. Balan E, Ingrin J, Delattre S, Kovács I, Blanchard M (2011) Theoretical infrared spectrum of OH-defects in forsterite. Eur J Mineral 23(3):285–292.  https://doi.org/10.1127/0935-1221/2011/0023-2090 CrossRefGoogle Scholar
  3. Balan E, Blanchard M, Lazzeri M, Ingrin J (2014) Contribution of interstitial OH groups to the incorporation of water in forsterite. Phys Chem Miner 41(2):105–114.  https://doi.org/10.1007/s00269-013-0628-y CrossRefGoogle Scholar
  4. Balan E, Blanchard M, Lazzeri M, Ingrin J (2017) Theoretical Raman spectrum and anharmonicity of tetrahedral OH defects in hydrous forsterite. Eur J Mineral 29(2):201–212.  https://doi.org/10.1127/ejm/2017/0029-2599 CrossRefGoogle Scholar
  5. Berry AJ, Hermann J, O’Neill HS, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33(11):869–872CrossRefGoogle Scholar
  6. Berry AJ, O’Neill HS, Hermann J, Scott DR (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261(1–2):134–142.  https://doi.org/10.1016/j.epsl.2007.06.021 CrossRefGoogle Scholar
  7. Blanchard M, Ingrin J, Balan E, Kovács I, Withers AC (2017) Effect of iron and trivalent cations on OH defects in olivine. Am Mineral 102(2):302–311.  https://doi.org/10.2138/am-2017-5777 CrossRefGoogle Scholar
  8. Bowen NL, Andersen O (1914) The binary system MgO–SiO2. Am J Sci Ser 4 37(222):487–500.  https://doi.org/10.2475/ajs.s4-37.222.487 CrossRefGoogle Scholar
  9. Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and \({f \text{O}_{2}}\). Phys Chem Miner 21(8):489–500.  https://doi.org/10.1007/BF00203923 CrossRefGoogle Scholar
  10. Davis BTC, England JL (1964) The melting of forsterite up to 50 kilobars. J Geophys Res 69(6):1113–1116.  https://doi.org/10.1029/JZ069i006p01113 CrossRefGoogle Scholar
  11. Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–425.  https://doi.org/10.1016/j.lithos.2015.11.012 CrossRefGoogle Scholar
  12. Demouchy S, Mackwell S (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30(8):486–494.  https://doi.org/10.1007/s00269-003-0342-2 CrossRefGoogle Scholar
  13. Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34(6):409–430.  https://doi.org/10.1007/s00269-007-0158-6 CrossRefGoogle Scholar
  14. Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29(21):1–26.  https://doi.org/10.1029/2002GL015480 CrossRefGoogle Scholar
  15. Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74(1):274–292.  https://doi.org/10.1016/j.gca.2009.10.016 CrossRefGoogle Scholar
  16. Doukhan N, Doukhan JC, Ingrin J, Jaoul O, Raterron P (1993) Early partial melting in pyroxenes. Am Mineral 78(11–12):1246–1256Google Scholar
  17. Du Frane WL, Tyburczy JA (2012) Deuterium–hydrogen exchange in olivine: Implications for point defects and electrical conductivity. Geochem Geophys Geosyst 13(3):Q03004.  https://doi.org/10.1029/2011GC003895 CrossRefGoogle Scholar
  18. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732.  https://doi.org/10.1093/biomet/82.4.711 CrossRefGoogle Scholar
  19. Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San Carlos olivine. Phys Earth Planet Inter 62(3):329–340CrossRefGoogle Scholar
  20. Ingrin J, Liu J, Depecker C, Kohn SC, Balan E, Grant KJ (2013) Low-temperature evolution of OH bands in synthetic forsterite, implication for the nature of H defects at high pressure. Phys Chem Miner 40(6):499–510.  https://doi.org/10.1007/s00269-013-0587-3 CrossRefGoogle Scholar
  21. Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302.  https://doi.org/10.1111/j.1751-908X.2005.tb00901.x CrossRefGoogle Scholar
  22. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429.  https://doi.org/10.1111/j.1751-908X.2011.00120.x CrossRefGoogle Scholar
  23. Jollands MC, O’Neill HSC, Hermann J (2014) The importance of defining chemical potentials, substitution mechanisms and solubility in trace element diffusion studies: the case of Zr and Hf in olivine. Contrib Mineral Petrol 168(3):1055.  https://doi.org/10.1007/s00410-014-1055-x CrossRefGoogle Scholar
  24. Jollands MC, Burnham AD, O’Neill HSC, Hermann J, Qian Q (2016a) Beryllium diffusion in olivine: a new tool to investigate timescales of magmatic processes. Earth Planet Sci Lett 450:71–82.  https://doi.org/10.1016/j.epsl.2016.06.028 CrossRefGoogle Scholar
  25. Jollands MC, Padrón-Navarta JA, Hermann J, O’Neill HSC (2016b) Hydrogen diffusion in Ti-doped forsterite and the preservation of metastable point defects. Am Mineral 101:1571–1583CrossRefGoogle Scholar
  26. Jollands MC, O’Neill HSC, Van Orman J, Berry AJ, Hermann J, Newville M, Lanzirotti A (2018) Substitution and diffusion of \({\text {Cr}^{2+}}\) and \({\text{ Cr }^{3+}}\) in synthetic forsterite and natural olivine at 1200–1500 \(^{\circ }{{\rm C}}\) and 1 bar. Geochim Cosmochim Acta 220:407–428.  https://doi.org/10.1016/j.gca.2017.09.030 CrossRefGoogle Scholar
  27. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207(1):147–162CrossRefGoogle Scholar
  28. Kovacs I, O’Neill HS, Hermann J, Hauri EH (2010) Site-specific infrared OH absorption coefficients for water substitution into olivine. Am Mineral 95(2–3):292–299.  https://doi.org/10.2138/am.2010.3313 CrossRefGoogle Scholar
  29. Kröger F, Vink H (1956) Relations between the concentrations of imperfections in crystalline solids. Solid state physics, 3rd edn. Elsevier, Amsterdam, pp 307–435.  https://doi.org/10.1016/S0081-1947(08)60135-6 CrossRefGoogle Scholar
  30. Lemaire C, Kohn SC, Brooker RA (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study. Contrib Mineral Petrol 147(1):48–57.  https://doi.org/10.1007/s00410-003-0539-x CrossRefGoogle Scholar
  31. Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95(B4):5079–5088.  https://doi.org/10.1029/JB095iB04p05079 CrossRefGoogle Scholar
  32. Matveev S, O’Neill HSC, Ballhaus C, Taylor WR, Green DH (2001) Effect of silica activity on \({\text{ OH }}^{-}\) IR spectra of olivine: implications for low-\(\text{ a }_{\rm SiO_{2}}\) mantle metasomatism. J Petrol 42(4):721–729.  https://doi.org/10.1093/petrology/42.4.721 CrossRefGoogle Scholar
  33. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10(1):27–37CrossRefGoogle Scholar
  34. Nesbitt HW, Bancroft GM, Henderson GS, Richet P, O’Shaughnessy C (2017) Melting, crystallization, and the glass transition: toward a unified description for silicate phase transitions. Am Mineral 102(2):412–420.  https://doi.org/10.2138/am-2017-5852 CrossRefGoogle Scholar
  35. Ni H, Zhang Y (2008) H2O diffusion models in rhyolitic melt with new high pressure data. Chem Geol 250(1–4):68–78CrossRefGoogle Scholar
  36. Novella D, Jacobsen B, Weber PK, Tyburczy JA, Ryerson FJ, Frane WLD (2017) Hydrogen self-diffusion in single crystal olivine and electrical conductivity of the Earth’s mantle. Sci Rep 7(1):5344.  https://doi.org/10.1038/s41598-017-05113-6 CrossRefGoogle Scholar
  37. Padrón-Navarta JA, Hermann J, O’Neill HSC (2014) Site-specific hydrogen diffusion rates in forsterite. Earth Planet Sci Lett 392:100–112.  https://doi.org/10.1016/j.epsl.2014.01.055 CrossRefGoogle Scholar
  38. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518.  https://doi.org/10.1039/C1JA10172B CrossRefGoogle Scholar
  39. Pluschkell VW, Engell HJ (1968) Ionen-und Elektronenleitung im Magnesiumorthosilikat. Berichte der Deutschen KeramischenGesellschaft 45:388–394Google Scholar
  40. Pownceby MI, O’Neill HSC (1994) Thermodynamic data from redox reactions at high temperatures. IV. Calibration of the \({\text{ Re }}\text{- }\text{ ReO }_{2}\) oxygen buffer from EMF and NiO + Ni-Pd redox sensor measurements. Contrib Mineral Petrol 118(2):130–137.  https://doi.org/10.1007/BF01052864 CrossRefGoogle Scholar
  41. Qin T, Wentzcovitch RM, Umemoto K, Hirschmann MM, Kohlstedt DL (2018) Ab initio study of water speciation in forsterite: importance of the entropic effect. Am Mineral 103(5):692–699.  https://doi.org/10.2138/am-2018-6262 CrossRefGoogle Scholar
  42. Richet P, Fiquet G (1991) High-temperature heat capacity and premelting of minerals in the system \({{\rm MgO}}{-}{{\rm CaO}}{-}{{\rm Al}}_{2}\text{O}_{3}{-}{{\text{ SiO }_{2}}}\). J Geophys Res 96(B1):445–456.  https://doi.org/10.1029/90JB02172 CrossRefGoogle Scholar
  43. Richet P, Leclerc F, Benoist L (1993) Melting of forsterite and spinel, with implications for the glass transition of \({\text{Mg}_{2}} \text{SiO}_{4}\) liquid. Geophys Res Lett 20(16):1675–1678.  https://doi.org/10.1029/93GL01836 CrossRefGoogle Scholar
  44. Richet P, Mysen BO, Andrault D (1996) Melting and premelting of silicates: Raman spectroscopy and X-ray diffraction of \({{\rm Li}}_{2}{{\rm SiO}}_{3}\) and \({{\rm Na}}_{2}{{\rm SiO}}_{3}\). Phys Chem Miner 23(3):157–172.  https://doi.org/10.1007/BF00220727 CrossRefGoogle Scholar
  45. Richet P, Mysen BO, Ingrin J (1998) High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys Chem Miner 25(6):401–414.  https://doi.org/10.1007/s002690050130 CrossRefGoogle Scholar
  46. Smyth DM, Stocker RL (1975) Point defects and non-stoichiometry in forsterite. Phys Earth Planet Inter 10(2):183–192.  https://doi.org/10.1016/0031-9201(75)90037-0 CrossRefGoogle Scholar
  47. Stocker RL, Smyth DM (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Phys Earth Planet Inter 16(2):145–156CrossRefGoogle Scholar
  48. Tollan PME, Smith R, O’Neill HS, Hermann J (2017) The responses of the four main substitution mechanisms of H in olivine to H2O activity at \(1050\,^{\circ }{{\rm C}}\) and 3 GPa. Prog Earth Planet Sci 4:14.  https://doi.org/10.1186/s40645-017-0128-7 CrossRefGoogle Scholar
  49. Tollan PME, O’Neill HSC, Hermann J (2018) The role of trace elements in controlling H incorporation in San Carlos olivine. Contrib Mineral Petrol 173(11):89.  https://doi.org/10.1007/s00410-018-1517-7 CrossRefGoogle Scholar
  50. Tsai TL, Dieckmann R (2002) Variation of the oxygen content and point defects in olivines, (Fex Mg1−x)2 SiO4, 0.2 \(\le\) x \(\le\) 1.0. Phys Chem Miner 29(10):680–694.  https://doi.org/10.1007/s00269-002-0283-1 CrossRefGoogle Scholar
  51. Umemoto K, Wentzcovitch RM, Hirschmann MM, Kohlstedt DL, Withers AC (2011) A first-principles investigation of hydrous defects and IR frequencies in forsterite: the case for Si vacancies. Am Mineral 96(10):1475–1479.  https://doi.org/10.2138/am.2011.3720 CrossRefGoogle Scholar
  52. Walker AM, Hermann J, Berry AJ, O’Neill HSC (2007) Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. J Geophys Res 112(B5):B05211.  https://doi.org/10.1029/2006JB004620 CrossRefGoogle Scholar
  53. Xue X, Kanzaki M, Turner D, Loroch D (2017) Hydrogen incorporation mechanisms in forsterite: new insights from \({^{1}}{{\rm H}}\) and \({^{29}}{{\rm Si}\,{\rm NMR}}\) spectroscopy and first-principles calculation. Am Mineral 102(3):519–536.  https://doi.org/10.2138/am-2017-5878 CrossRefGoogle Scholar
  54. Zhukova I, StC O’Neill H, Cambell IH, Kilburn MR (2014) The effect of silica activity on the diffusion of Ni and Co in olivine. Contrib Mineral Petrol 168(2):1029.  https://doi.org/10.1007/s00410-014-1029-z CrossRefGoogle Scholar
  55. Zhukova I, O’Neill HSC, Campbell IH (2017) A subsidiary fast-diffusing substitution mechanism of Al in forsterite investigated using diffusion experiments under controlled thermodynamic conditions. Contrib Mineral Petrol 172(7):53.  https://doi.org/10.1007/s00410-017-1365-x CrossRefGoogle Scholar
  56. Zhukova I, O’Neill H, Campbell IH, Fiorentini M, Kilburn M, Guagliardo P (2018) Diffusion and solubilities of Rh, Ru and Ir in olivine and spinel. Chem Geol 494:19–29.  https://doi.org/10.1016/j.chemgeo.2018.07.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Institute of Earth Sciences, Géopolis BuildingUniversity of LausanneLausanneSwitzerland
  3. 3.Institut für GeologieUniversität BernBernSwitzerland
  4. 4.Ecole Normal Supérieure de LyonLyonFrance

Personalised recommendations