Advertisement

Reply to Müntener and Baumgartner comment on: ‘Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton’

  • Norbert A. GajosEmail author
  • Craig L. Lundstrom
  • Alexander H. Taylor
  • Dana E. Drinkall
Reply
  • 135 Downloads

Abstract

Müntener and Baumgartner (Contrib Mineral Petrol, 2019) comment on our interpretations of the petrogenetic processes operating within the Torres del Paine Intrusive complex (Gajos et al., in Contrib Mineral Petrol 171(11):93, 2016). The issues raised reflect either points that are subject to interpretation or misrepresentations of the data we provided. We dispute field observations and counter that their model reflects over-interpretation due to limited age dating. We provide new geothermometry data indicating that marginal granites formed in a cold environment, consistent with our original model. The Fe and Sr data are not consistent with their two endmember mixing argument. We conclude by reaffirming our position that the thermal migration zone refining process provides a viable explanation for the isotopic variation and construction of the Torres del Paine pluton.

Keywords

Torres del Paine Magma chamber Magma differentiation Fe isotopes Si isotopes Thermal diffusion 

Notes

Acknowledgements

We thank reviewers Jonathan Miller and anonymous for constructive comments and editorial handling by T. Grove and J. Hoefs.

Supplementary material

410_2019_1588_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Ackerson MR, Mysen BO, Tailby ND, Watson EB (2018) Low-temperature crystallization of granites and the implications for crustal magmatism. Nature 559:94–97CrossRefGoogle Scholar
  2. Andersen NL, Jicha BR, Singer BS, Hildreth W (2017) Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc Natl Acad Sci 114:47CrossRefGoogle Scholar
  3. Baumgartner LP, Michel J, Putlitz B, Leuthold J, Müntener O, Robyr M, Darbellay B (2007) Field guide to the Torres del Paine Igneous Complex and its contact aureole. In: Demant A, Herve F, Menichetti M, Tassone A (eds) Field Guide Book GEOSUR. International Congress on the Southern Hemisphere, Santiago, Chile, November 18–20Google Scholar
  4. Baumgartner LP, Michel J, Putlitz B, Müntener O, Schaltegger U, Ovtcharova M (2009) Dating magma emplacement in the shallow crust. Geochim Cosmochim Acta Suppl 73:96Google Scholar
  5. Cruz-Uribe AM, Mertz-Kraus R, Zack T, Feineman MD, Woods G, Jacob DE (2017) A new LA-ICP-MS method for Ti in quartz: implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge. Geostand Geoanal Res 41(1):29–40CrossRefGoogle Scholar
  6. Gajos NA, Lundstrom CC, Taylor AH (2016) Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton. Contrib Mineral Petrol 171(11):93CrossRefGoogle Scholar
  7. Ghiorso MS, Gualda GA (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib Mineral Petrol 165(1):73–81CrossRefGoogle Scholar
  8. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4/5):4–12CrossRefGoogle Scholar
  9. Huang F, Lundstrom CC, Ianno AJ, Boudreau AE, Li J, Ferré EC, Marshak S, DeFrates J (2009) Thermal migration in wet andesite: experiments and models suggesting a new mechanism of magma differentiation. Geochim Cosmochim Acta 73:729–749CrossRefGoogle Scholar
  10. Johnson BR, Glazner AF (2010) Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib Mineral Petrol 159(5):599–619CrossRefGoogle Scholar
  11. Lacks DJ, Goel G, Bopp CJ, Van Orman JA, Lesher CE, Lundstrom CC (2012) Isotope fractionation by thermal diffusion in silicate melts. Phys Rev Lett 108(6):065901CrossRefGoogle Scholar
  12. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Chiaradia M (2012a) A detailed geochemical study of a shallow arc-related Laccolith; the Torres del Paine complex (Patagonia). J Petrol 54:273–303CrossRefGoogle Scholar
  13. Leuthold J, Müntener O, Baumgartner LP, Putlitz B, Ovtcharova M, Schaltegger U (2012b) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet Sci Lett 325:85–92CrossRefGoogle Scholar
  14. Leuthold J, Müntener O, Baumgartner LP, Putlitz B (2014) Petrological constraints on the recycling of mafic crystal mushes and intrusion of braided sills in the Torres del Paine complex (Patagonia). J Petrol 55(5):917–949CrossRefGoogle Scholar
  15. Lundstrom CC (2009) Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining. Geochim Cosmochim Acta 73(19):5709–5729CrossRefGoogle Scholar
  16. Lundstrom CC (2016) The role of thermal migration and low-temperature melt in granitoid formation: can granite form without rhyolitic melt? Int Geol Rev 58(3):371–388CrossRefGoogle Scholar
  17. Lundstrom CC (2017) A self-consistent top down model for differentiation in bimodal suites: application to the Sonju Lake Intrusion—Finland Granite system (MN). Int Geol Rev.  https://doi.org/10.1080/00206814.2016.1276866 CrossRefGoogle Scholar
  18. Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 ky. Geology 36(6):459–462CrossRefGoogle Scholar
  19. Müntener O, Baumgartner L (2019) Comment on: ‘Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton’. Contrib Mineral Petrol.  https://doi.org/10.1007/s00410-019-1589-z CrossRefGoogle Scholar
  20. Putlitz B, Baumgartner LP, Oberhaensli R, Diamond L, Altenberger U (2001) The Torres del Paine Laccolith (Chile); intrusion and metamorphism. In: XI Annual V. M. Goldschmidt proceedings, Virginia. Abstract 3534Google Scholar
  21. Richter FM, Watson EB, Mendybaev RA, Teng FZ, Janney PE (2008) Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 72(1):206–220CrossRefGoogle Scholar
  22. Rubin AE, Cooper KM, Till CB, Kent AJ, Costa F, Bose M, Cole J (2017) Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356(6343):1154–1156CrossRefGoogle Scholar
  23. Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160(5):743–759CrossRefGoogle Scholar
  24. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:1–146Google Scholar
  25. Zambardi T, Lundstrom CC, Li XX, McCurry M (2014) Fe and Si isotope variations at Cedar Butte volcano: insight into magmatic differentiation. Earth Planet Sci Lett 405:169–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Norbert A. Gajos
    • 1
    Email author
  • Craig L. Lundstrom
    • 1
  • Alexander H. Taylor
    • 1
  • Dana E. Drinkall
    • 1
  1. 1.Department of GeologyUniversity of Illinois, Urbana-ChampaignChampaignUSA

Personalised recommendations