Advertisement

The link between an anorthosite complex and underlying olivine–Ti-magnetite-rich layered intrusion in Damiao, China: insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites

  • Li–Xing LiEmail author
  • Hou–Min Li
  • Jian–Wei Zi
  • Birger Rasmussen
  • Stephen Sheppard
  • Yu–Bo Ma
  • Jie Meng
  • Zhe Song
Original Paper
  • 110 Downloads

Abstract

Mafic–ultramafic intrusions comagmatic with Proterozoic massif-type anorthosites can provide insights into the parental magma from which large volumes of hyper-feldspathic rocks are produced. Recent deep drilling has unveiled a large olivine–Ti-magnetite-rich layered intrusion (named Dawusunangou) beneath the Damiao massif-type anorthosite complex in the North China Craton. The layered intrusion is composed of alternating olivine–Ti-magnetite-rich dark layers and plagioclase-rich light layers (ca. 35–80% plagioclase), with the latter also containing pod- or lens-shaped pyroxene–Ti-magnetite-rich aggregates. This layered intrusion shows low Mg# and REE patterns similar to the overlying Damiao anorthosite complex. Baddeleyite Pb–Pb geochronology yielded indistinguishable crystallization ages of ca. 1735 Ma for both the Dawusunangou layered intrusion and the Damiao anorthosite complex, suggesting coeval emplacement. Using the average bulk compositions of the two intrusions, mass balance calculations assuming 30–40% Dawusunangou and 70–60% Damiao would give a composition similar to high-Al basaltic magma. Collectively, these features indicate that the Dawusunangou layered intrusion represents the mafic residues after the segregation of the Damiao anorthosites from high-Al basaltic parental magma. A short-lived magma chamber is thought to have supplied the two intrusions. In situ crystallization with variable nucleation rates for plagioclase combined with the mafic minerals crystallizing in equilibrium proportions resulted in the formation of repeated dark and light layers of the Dawusunangou layered intrusion. The two intrusions are interpreted to have formed by multiple magma injections, instead of continuous differentiation of one melt. The parental magma was derived from a depleted mantle source with significant crustal contribution during magma evolution. The large Nd–Hf isotopic variations suggest contamination by Paleoarchean to Neoarchean crust.

Keywords

Olivine Layered intrusion Massif-type anorthosites High-Al basalt Residual melt North China Craton 

Notes

Acknowledgements

We thank the 4th geological team of HGMB for giving access to drill cores. This study was financially supported by the National Key R&D Program of China (2018YFC0603905) and National Natural Foundation of China (41873062; 41402067; 41672078). LXL acknowledges a fellowship from the China Scholarship Council. We appreciate Xiaoxiao Ling, Jiao Li, Xiaodan Chen, Pan Sun and Mu Liu for their assistance with analyses. We are grateful to LD Ashwal, JC Duchesne and H Keppler for their insightful comments and detailed suggestions that greatly improved the paper.

Supplementary material

410_2019_1586_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)
410_2019_1586_MOESM2_ESM.docx (52 kb)
Supplementary material 2 (DOCX 52 kb)
410_2019_1586_MOESM3_ESM.docx (47 kb)
Supplementary material 3 (DOCX 47 kb)
410_2019_1586_MOESM4_ESM.docx (16 kb)
Supplementary material 4 (DOCX 15 kb)
410_2019_1586_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 16 kb)

References

  1. Ashwal LD (1993) Anorthosites. Minerals and rocks, 21. Springer, Berlin, Heidelberg, pp 83–218Google Scholar
  2. Ashwal LD, Bybee GM (2017) Crustal evolution and the temporality of anorthosites. Earth Sci Rev 173:307–330.  https://doi.org/10.1016/j.earscirev.2017.09.002 CrossRefGoogle Scholar
  3. Ashwal LD, Wooden JL, Emslie RF (1986) Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: implications for crustal contamination and basement mapping. Geochim Cosmochim Acta 50:2571–2585.  https://doi.org/10.1016/0016-7037(86)90211-5 CrossRefGoogle Scholar
  4. Ashwal LD, Hamilton MA, Morel VPI, Rambeloson R (1998) Geology, petrology and isotope geochemistry of massif-type anorthosites from southwest Madagascar. Contrib Mineral Petrol 133:389–401.  https://doi.org/10.1007/s004100050461 CrossRefGoogle Scholar
  5. Bai XS, Zhang LJ, Shen ZQ, Xie P, Wang YY, Hou TZ (2014) Features of geomagnetic anomaly and prospecting potential of the Dawusunangou Fe–Ti–V deposit, Longhua county. Hebei Geol 2:15–16 (in Chinese) Google Scholar
  6. Blichert-Toft J, Albarede F (1998) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258.  https://doi.org/10.1016/S0012-821X(97)00040-X CrossRefGoogle Scholar
  7. Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Science Publishers BV, Amsterdam, pp 63–114CrossRefGoogle Scholar
  8. Bybee GM, Ashwal LD (2015) Isotopic disequilibrium and lower crustal contamination in slowly ascending magmas: insights from Proterozoic anorthosites. Geochim Cosmochim Acta 167:286–300.  https://doi.org/10.1016/j.gca.2015.07.034 CrossRefGoogle Scholar
  9. Bybee GM, Ashwal LD, Shirey SB, Horan M, Mock T, Andersen TB (2014) Pyroxene megacrysts in Proterozoic anorthosites: implications for tectonic setting, magma source and magmatic processes at the Moho. Earth Planet Sci Lett 389:74–85.  https://doi.org/10.1016/j.epsl.2013.12.015 CrossRefGoogle Scholar
  10. Campbell IH, Roeder PL, Dixon JM (1978) Plagioclase buoyancy in basaltic liquids as determined with a centrifuge furnace. Contrib Mineral Petrol 67:369–377.  https://doi.org/10.1007/bf00383297 CrossRefGoogle Scholar
  11. Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib Mineral Petrol 164:27–44.  https://doi.org/10.1007/s00410-012-0723-y CrossRefGoogle Scholar
  12. Charlier B, Duchesne JC, Vander Auwera J (2006) Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem Geol 234:264–290.  https://doi.org/10.1016/j.chemgeo.2006.05.007 CrossRefGoogle Scholar
  13. Charlier B, Duchesne JC, Vander Auwera J, Storme JY, Maquil R, Longhi J (2010) Polybaric fractional crystallization of high-alumina basalt parental magmas in the Egersund-Ogna massif-type anorthosite (Rogaland, SW Norway) constrained by plagioclase and high–alumina orthopyroxene megacrysts. J Petrol 51:2515–2546.  https://doi.org/10.1093/petrology/egq066 CrossRefGoogle Scholar
  14. Charlier B, Namur O, Bolle O, Latypov R, Duchesne JC (2015) Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56–81.  https://doi.org/10.1016/j.earscirev.2014.11.005 CrossRefGoogle Scholar
  15. Chen WT, Zhou MF, Gao JF, Zhao TP (2015) Oscillatory Sr isotopic signature in plagioclase megacrysts from the Damiao anorthosite complex, North China: implications for petrogenesis of massif-type anorthosite. Chem Geol 293–294:1–15.  https://doi.org/10.1016/j.chemgeo.2014.11.008 CrossRefGoogle Scholar
  16. Cui XH, Zhai MG, Guo JH, Zhao L, Zhu XY, Wang HZ, Huang GY, Ge SS (2018) Field occurrences and Nd isotopic characteristics of the meta-mafic ultramafic rocks from the Caozhuang Complex, eastern Hebei: implications for early Archean crustal evolution of the North China Craton. Precambrian Res 310:425–442.  https://doi.org/10.1016/j.precamres.2018.03.006 CrossRefGoogle Scholar
  17. Deer WA, Howie RA, Zussman J (1966) An introduction to rock-forming minerals. Longmans, London., p 528Google Scholar
  18. Duchesne JC, Charlier B (2005) Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S. Norway). Part I: constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos 83:229–254.  https://doi.org/10.1016/j.lithos.2005.03.005 CrossRefGoogle Scholar
  19. Duchesne JC, Liégeois JP, Vander Auwera J, Longhi J (1999) The crustal tongue melting model and the origin of massive anorthosites. Terra Nova 11:100–105.  https://doi.org/10.1046/j.1365-3121.1999.00232.x CrossRefGoogle Scholar
  20. Duchesne JC, Shumlyanskyy L, Charlier B (2006) The Fedorivka layered intrusion (Korosten Pluton, Ukraine): an example of highly differentiated ferrobasaltic evolution. Lithos 89:353–376.  https://doi.org/10.1016/j.lithos.2006.01.003 CrossRefGoogle Scholar
  21. Duchesne JC, Shumlyanskyy L, Mytrokhync OV (2017) The jotunite of the Korosten AMCG complex (Ukrainian shield): crust- or mantle-derived? Precambrian Res 299:58–74.  https://doi.org/10.1016/j.precamres.2017.07.018 CrossRefGoogle Scholar
  22. Emslie RF (1978) Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of North America. Precambrian Res 7:61–98.  https://doi.org/10.1016/0301-9268(78)90005-0 CrossRefGoogle Scholar
  23. Emslie RF, Hamilton MA, Theriault RJ (1994) Petrogenesis of a Mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: isotopic and chemical evidence from the Nain Plutonic Suite. J Geol 102:539–558.  https://doi.org/10.1086/629697 CrossRefGoogle Scholar
  24. Fan HJ, Li YN, Gao J (2014) Geology and origin of the Dawusunangou Fe–Ti–V deposit, Longhua county. Hebei Geol 2:29–32 (in Chinese) Google Scholar
  25. Fram MS, Longhi J (1992) Phase equilibria of dikes associated with Proterozoic anorthosite complexes. Am Mineral 77:605–616Google Scholar
  26. Ge S, Zhai M, Li T, Peng P, Santosh M, Shan H, Zuo P (2015) Zircon U–Pb geochronology and geochemistry of low-grade metamorphosed volcanic rocks from the Dantazi Complex: implications for the evolution of the North China Craton. J Asian Earth Sci 111:948–965.  https://doi.org/10.1016/j.jseaes.2015.08.021 CrossRefGoogle Scholar
  27. Goode ADT (1977) Intercumulus igneous layering in the Kalka layered intrusion, central Australia. Geol Mag 114:215–218.  https://doi.org/10.1017/S0016756800044794 CrossRefGoogle Scholar
  28. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147.  https://doi.org/10.1016/S0016-7037(99)00343-9 CrossRefGoogle Scholar
  29. Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma genesis, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous complexes. Lithos 61:237–269.  https://doi.org/10.1016/S0024-4937(02)00082-8 CrossRefGoogle Scholar
  30. Heaman LM (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52.  https://doi.org/10.1016/j.chemgeo.2008.10.021 CrossRefGoogle Scholar
  31. Heaman LM, LeCheminant AN (1993) Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chem Geol 110:95–126.  https://doi.org/10.1016/0009-2541(93)90249-I CrossRefGoogle Scholar
  32. Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ (2007) Laser ablation–MCICP–MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol Sin 23:2595–2604 (in Chinese with English abstract) Google Scholar
  33. Jakobsen JK, Veksler IV, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33:885–888.  https://doi.org/10.1130/G21724.1 CrossRefGoogle Scholar
  34. Li LX, Li HM, Chen ZL, Wang DH, Chen WS (2010a) Hydrothermal mineralization and fluid inclusion study on the Heishan iron deposit, Chengde county, Hebei province, China. Acta Petrol Sin 26(3):858–870 (in Chinese with English abstract) Google Scholar
  35. Li QL, Li XH, Liu Y, Tang GQ, Yang JH, Zhu WG (2010b) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal Atom Spectrom 25:1107–1113.  https://doi.org/10.1039/b923444f CrossRefGoogle Scholar
  36. Li LX, Li HM, Cui YH, Zhu MY, Wang DZ, Yang XQ, Liu MJ, Chen J (2012a) Geochronology and petrogenesis of the Gaositai Cr-bearing ultramafic complex, Hebei Province, China. Acta Petrol Sin 28(11):3757–3771 (in Chinese with English abstract) Google Scholar
  37. Li LX, Li HM, Wang DH, Liu MJ, Yang XQ, Chen J (2012b) Ore genesis and ore-forming age of the Tiemahabaqin ultra-low-grade iron deposit in Chengde, Hebei Province, China. Rock Miner Anal 31(5):898–905.  https://doi.org/10.15898/j.cnki.11-2131/td.2012.05.011 (in Chinese with English abstract) CrossRefGoogle Scholar
  38. Li HM, Li LX, Zhang ZC, Santosh M, Liu MJ, Cui YH, Yang XQ, Chen J, Yao T (2014a) Alteration of the Damiao anorthosite complex in the northern North China Craton: implications for high-grade iron mineralization. Ore Geol Rev 57:574–588.  https://doi.org/10.1016/j.oregeorev.2013.08.017 CrossRefGoogle Scholar
  39. Li LX, Li HM, Wang DZ, Yang XQ, Liu MJ, Chen J, Yao T (2014b) Zircon geochronology and Hf isotope geochemistry of the ultramafic rocks from the Habaqin complex in northern Hebei Province, China: implication for the activities and sources of the magma. Acta Petrol Sin 30(5):1472–1484 (in Chinese with English abstract) Google Scholar
  40. Li LX, Li HM, Li YZ, Yao T, Yang XQ, Chen J (2015) Origin of rhythmic anorthositic–pyroxenitic layering in the Damiao anorthosite complex, China: implications for late-stage fractional crystallization and genesis of Fe–Ti oxide ores. J Asian Earth Sci 113:1035–1055.  https://doi.org/10.1016/j.jseaes.2015.01.023 CrossRefGoogle Scholar
  41. Longhi J (2005) A mantle or mafic crustal source for Proterozoic anorthosites? Lithos 83:183–198.  https://doi.org/10.1016/j.lithos.2005.03.009 CrossRefGoogle Scholar
  42. Longhi J, Vander Auwera J, Fram MS, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks. J Petrol 40:339–362.  https://doi.org/10.1093/petroj/40.2.339 CrossRefGoogle Scholar
  43. Lu S, Zhao G, Wang H, Hao G (2008) Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Res 160(1–2):77–93.  https://doi.org/10.1016/j.precamres.2007.04.017 CrossRefGoogle Scholar
  44. Ludwig KR (2003) User’s Manual for Isoplot 3.0: a Geochronological toolkit for miscrosoft excel. Berkeley Chronology Center. Special publication 4, pp 1–71Google Scholar
  45. Mitchell JN, Scoates JS, Frost CD (1995) High-Al gabbros in the Laramie anorthosite complex, Wyoming: implications for the composition of melts parental to Proterozoic anorthosite. Contrib Mineral Petrol 119:166–180.  https://doi.org/10.1007/BF00307279 CrossRefGoogle Scholar
  46. Myers JS, Voordouw RJ, Tettelaar TA (2008) Proterozoic anorthosite–granite Nain batholith: structure and intrusion processes in an active lithosphere-scale fault zone, northern Labrador. Can J Earth Sci 45:909–934.  https://doi.org/10.1139/E08-041 CrossRefGoogle Scholar
  47. Namur O, Charlier B, Pirard C, Hermann J, Liégeois JP, Vander Auwera J (2011) Anorthosite formation by plagioclase flotation in ferrobasalt and implications for the lunar crust. Geochim Cosmochim Acta 75:4998–5018.  https://doi.org/10.1016/j.gca.2011.06.013 CrossRefGoogle Scholar
  48. Namur O, Abily B, Boudreau AE, Blanchette F, Bush JWM, Ceulenneer G, Charlier B, Donaldson CH, Duchesne JC, Higgins MD, Morata D, Neilsen TFD, O’Driscoll B, Pang KN, Peacock T, Spandler CJ, Toramaru A, Veksler IV (2015) Igneous layering in basaltic magma chambers. In: Charlier B, Namur O, Latypov R, Tegner C (eds) Layered intrusions. Springer Geology, New York, pp 75–152CrossRefGoogle Scholar
  49. Naslund HR, McBirney AR (1996) Mechanisms of formation of igneous layering. In: Cawthorn RG (ed) Layered igneous rocks. Elsevier, Amsterdam, pp 1–44Google Scholar
  50. Owens BE, Dymek RF (1992) Fe–Ti–P rocks and massif anorthosite: problems of interpretation illustrated from the Labrieville and St–Urbain plutons, Quebec. Can Mineral 30:163–190Google Scholar
  51. Peng P, Zhai MG, Zhang HF, Guo JG (2005) Geochronological constraints on Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dykes. Int Geol Rev 47:492–508.  https://doi.org/10.2747/0020-6814.47.5.492 CrossRefGoogle Scholar
  52. Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB, Chu ZY (2006) Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrol Sin 22(2):377–386 (in Chinese with English abstract) Google Scholar
  53. Santosh M, Liu DY, Shi YR, Liu SJ (2013) Paleoproterozoic accretionary orogenesis in the North China Craton: a SHRIMP zircon study. Precambrian Res 227:29–54.  https://doi.org/10.1016/j.precamres.2011.11.004 CrossRefGoogle Scholar
  54. Scoates JS, Chamberlain KR (2003) Geochronologic, geochemical and isotopic constraints on the origin of monzonitic and related rocks in the Laramie anorthosite complex, Wyoming, USA. Precambrian Res 124:269–304.  https://doi.org/10.1016/S0301-9268(03)00089-5 CrossRefGoogle Scholar
  55. Scoates JS, Mitchell JN (2000) The evolution of troctolite and high Al basaltic magmas in Proterozoic anorthosite plutonic suites and implications for the Voisey’s Bay massive Ni–Cu sulfide deposit. Econ Geol 95:677–701.  https://doi.org/10.2113/95.4.677 CrossRefGoogle Scholar
  56. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324.  https://doi.org/10.1016/S0012-821X(04)00012-3 CrossRefGoogle Scholar
  57. Song B, Nutman AP, Liu DY, Wu JS (1996) 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94.  https://doi.org/10.1016/0301-9268(95)00070-4 CrossRefGoogle Scholar
  58. Teng XM, Santosh M (2015) A long-lived magma chamber in the Paleoproterozoic North China Craton: evidence from the Damiao gabbro–anorthosite suite. Precambrian Res 256:79–101.  https://doi.org/10.1016/j.precamres.2014.10.018 CrossRefGoogle Scholar
  59. The 4th geological team of Hebei (2007) Geological map of the Damiao-Heishan area in Chengde, China. Scale 1:25000 (in Chinese) Google Scholar
  60. Vander Auwera J, Bolle O, Bingen B, Liégeois JP, Bogaerts M, Duchesne JC, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375–397.  https://doi.org/10.1016/j.earscirev.2011.04.005 CrossRefGoogle Scholar
  61. Wilde SA, Zhao GC (2005) Archean to Paleoproterozoic evolution of the North China Craton. J Asian Earth Sci 24:519–522.  https://doi.org/10.1016/j.jseaes.2004.06.004 CrossRefGoogle Scholar
  62. Woodhead JD, Hergt JM (2005) A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand Geoanal Res 29:183–195.  https://doi.org/10.1111/j.1751-908X.2005.tb00891.x CrossRefGoogle Scholar
  63. Xiang P, Cui ML, Wu HY, Zhang XJ, Zhang LC (2012) Geological characteristics, ages of host rocks and its significance of the Zhoutaizi iron deposit in Luanping, Hebei Province. Acta Petrol Sin 28(11):3655–3669 (in Chinese with English abstract) Google Scholar
  64. Yang JH, Wu FY, Wilde SA, Zhao GC (2008) Petrogenesis and geodynamics of late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Res 167:125–149.  https://doi.org/10.1016/j.precamres.2008.07.004 CrossRefGoogle Scholar
  65. Ye DH (1989) The geological setting and ore genesis of the Heishan vanadium–titano magnetite and apatite deposits in Chengde, Hebei. A monograph of the No.4 Team of Hebei Geological Survey, pp 1–355 (in Chinese)Google Scholar
  66. Zhai MG, Guo JH, Liu WJ (2005) Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. J Asian Earth Sci 24(5):547–561.  https://doi.org/10.1016/j.jseaes.2004.01.018 CrossRefGoogle Scholar
  67. Zhang SH, Liu SW, Zhao Y, Yang JH, Song B, Liu XM (2007) The 1.75–1.68 Ga anorthosite–mangerite–alkali granitoid–rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambrian Res 155:287–312.  https://doi.org/10.1016/j.precamres.2007.02.008 CrossRefGoogle Scholar
  68. Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW, Chen HH (2009) Late Paleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110:229–246.  https://doi.org/10.1016/j.lithos.2009.01.008 CrossRefGoogle Scholar
  69. Zhao GC, Wilde SA, Cawood PA, Lu LZ (1998) Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev 40:706–721.  https://doi.org/10.1080/00206819809465233s CrossRefGoogle Scholar
  70. Zhao TP, Chen FK, Zhai MG, Xia B (2004a) Single zircon U–Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrol Sin 20(3):685–690 (in Chinese with English abstract) Google Scholar
  71. Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX, Wan YS (2004b) Study on the zircon SHRIMP ages of the Xiong’er Group volcanic rocks: constraint on the starting time of covering strata in the North China Craton. Chin Sci Bull 49:2495–2502CrossRefGoogle Scholar
  72. Zhao GC, Sun M, Wilde SA, Li S (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202.  https://doi.org/10.1016/j.precamres.2004.10.002 CrossRefGoogle Scholar
  73. Zhao TP, Chen W, Zhou MF (2009) Geochemical and Nd–Hf isotopic constraints on the origin of the ~ 1.74 Ga Damiao anorthosite complex, North China Craton. Lithos 113:673–690.  https://doi.org/10.1016/j.lithos.2009.07.002 CrossRefGoogle Scholar
  74. Zhao TP, Chen W, Lu B (2010) Characteristics and origin of Fe–Ti–P oxide deposits associated with Proterozoic massif–type anorthosite. Earth Sci Front 17(2):106–117 (in Chinese with English abstract) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingChina
  2. 2.School of Earth and Planetary SciencesCurtin UniversityPerthAustralia
  3. 3.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina
  4. 4.John de Laeter Centre for Isotope ResearchCurtin UniversityPerthAustralia
  5. 5.School of Earth SciencesUniversity of Western AustraliaPerthAustralia
  6. 6.Calidus Resources LtdWest PerthAustralia

Personalised recommendations