Advertisement

Oxygen isotope compositions of lavas from the Galapagos archipelago: geochemical contributions from modern crustal sources

  • Mary E. PetersonEmail author
  • Z. Wang
  • A. E. Saal
  • J. M. Eiler
  • M. D. Kurz
Original Paper

Abstract

New oxygen isotope compositions of olivine phenocrysts collected across the Galapagos archipelago show a larger range of δ18Oolivine values than previously reported (4.74–5.40‰) in the region. Olivines from Fernandina, Floreana, and Pinta, which represent the main radiogenic isotope end-members of the Galapagos hotspot, have δ18O values of 5.02 ± 0.08‰ (1σ), within the accepted range of the oxygen isotope composition of mantle olivines. In general, δ18Oolivine values do not correlate with radiogenic isotope compositions of hosting lavas. Instead, the span of δ18Oolivine values is more consistent with widespread lithospheric contamination. δ18Oolivine values at the higher end of the range in the Galapagos are correlated with indices of crustal assimilation including Sr/Sr*. Values below the normal mantle range can be explained by assimilation and fractional crystallization processes. Olivines that have δ18O values below the normal mantle range come from the western part of the archipelago with the thickest lithosphere. This is consistent with melt interacting with crust that underwent hydrothermal alteration at elevated temperature, causing a decrease in δ18O values. In contrast, the highest δ18O values of the Galapagos come from areas underlain by thin lithosphere in the eastern part of the archipelago. This is consistent with shallow crust/melt interaction that is generally associated with δ18O values above the normal mantle range. These results suggest that while the three end-member components of the Galapagos mantle have a generally homogenous δ18O value indistinguishable from “normal” upper mantle, there is a more widespread effect of lithospheric contamination in melts than previously thought.

Keywords

Galapagos Mantle plume Ocean Island Oxygen isotopes Assimilation AFC process 

Notes

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship (Grant no. DGE-1058262 to M.E.P.), the National Science Foundation Division of Ocean Sciences (Grant no. 0962195) and the NSF support that allowed collection of the samples. We would like to thank T. Prissel, B. Parks and E. Chin for their thoughtful discussions during the preparation of this manuscript and Dennis Geist for sharing some of the samples in this study. We’d also like to thank Dr. Chris Harris and an anonymous second reviewer as well the editor, Dr. Jochen Hoefs, for their thoughtful reviews. Their suggestions greatly improved the quality of the manuscript.

Supplementary material

410_2019_1550_MOESM1_ESM.xlsx (124 kb)
Supplementary material 1 (XLSX 124 KB)
410_2019_1550_MOESM2_ESM.eps (3.2 mb)
Supplementary material 2 (EPS 3312 KB)
410_2019_1550_MOESM3_ESM.docx (117 kb)
Supplementary material 3 (DOCX 117 KB)

References

  1. Alt JC, Bach W (2006) Oxygen isotope composition of a section of lower oceanic crust, ODP hole 735B. Geochem Geophys Geosyst 7(12):Q12008.  https://doi.org/10.1029/2006GC001385 CrossRefGoogle Scholar
  2. Alt JC, Honnorez J (1984) Alteration of the upper oceanic crust, DSDP site 417: mineralogy and chemistry. Contrib Mineral Petrol 87:149–169CrossRefGoogle Scholar
  3. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJ (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3287CrossRefGoogle Scholar
  4. Bedard JH (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742CrossRefGoogle Scholar
  5. Bindeman IN, Sigmarsson O, Eiler J (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grimsvotn volcanic system. Earth Planet Sci Lett 245:245–259CrossRefGoogle Scholar
  6. Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193CrossRefGoogle Scholar
  7. Blichert-Toft J, White WM (2001) Hf isotope geochemistry of the Galapagos Islands. Geochem Geophys Geosyst 2(9):1043.  https://doi.org/10.1029/2000GC000138 CrossRefGoogle Scholar
  8. Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids; a model calculation. Am J Sci 272(5):438–475CrossRefGoogle Scholar
  9. Bucholz CE, Jagoutz O, Van Tongeren JA, Setera J, Wang Z (2017) Oxygen isotope trajectories of crystallizing melts: insights from modeling and the plutonic record. Geochim Cosmochim Acta 207:154–184CrossRefGoogle Scholar
  10. Bush M, Colinvaux P, Steinitz-Kannan M, Overpeck J, Sachs J, Cole J, Collins A, Conroy J, Restrepo A, Zhang Z (2010) Forty years of paleoecology in the Galapagos. Galapagos Res 67:55–61Google Scholar
  11. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite—application to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  12. Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res Solid Earth 108:ECV-2.  https://doi.org/10.1029/2001JB001171 CrossRefGoogle Scholar
  13. Cooper KM, Eller JM, Asimow PD, Langmuir CH (2004) Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett 220:297–316CrossRefGoogle Scholar
  14. Cullen A, Vicenzi E, McBirney AR (1989) Plagioclase-ultraphyric basalts of the galapagos archipelago. J Volcanol Geotherm Res 37:325–337CrossRefGoogle Scholar
  15. Danyushevsky LV (2001) The effect of small amounts of H2O crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110:265–280CrossRefGoogle Scholar
  16. Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modeling crystallization processes. Geochem Geophys Geosyst 12:Q07021.  https://doi.org/10.1029/2011GC003516 CrossRefGoogle Scholar
  17. Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2009) Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary island lavas. Geology 37:555–558CrossRefGoogle Scholar
  18. Day JM, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2010) Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary islands. Geochim Cosmochim Acta 74:6565–6589CrossRefGoogle Scholar
  19. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  20. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  21. Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000a) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41:229–256CrossRefGoogle Scholar
  22. Eiler JM, Schiano P, Kitchen N, Stolper EM (2000b) Oxygen-isotype evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403:530–534CrossRefGoogle Scholar
  23. Farley KA, Natland JH, Craig H (1992) Binary mixing of enriched and undegassed (primitive-questionable) mantle components (He, Sr, Nd, Pb) in Samoan Lavas. Earth Planet Sci Lett 111:183–199CrossRefGoogle Scholar
  24. Feighner MA, Richards MA (1994) Lithospheric structure and compensation mechanisms of the Galapagos Archipelago. J Geophys Res Solid Earth 99:6711–6729CrossRefGoogle Scholar
  25. Gaffney AM, Nelson BK, Blichert-Toft J (2004) Geochemical constraints on the role of oceanic lithosphere in intra-volcano heterogeneity at West Maui, Hawaii. J Petrol 45:1663–1687CrossRefGoogle Scholar
  26. Gaffney AM, Nelson BK, Reisberg L, Eiler J (2005) Oxygen-osmium isotope systematics of West Maui lavas: a record of shallow-level magmatic processes. Earth Planet Sci Lett 239:122–139CrossRefGoogle Scholar
  27. Gao Y, Hoefs J, Przybilla R, Snow JE (2006) A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B. Chem Geol 233:217–234CrossRefGoogle Scholar
  28. Garcia MO, Ito E, Eiler JM, Pietruszka AJ (1998) Crustal contamination of Kilauea Volcano magmas revealed by oxygen isotope analyses of glass and olivine from Pun Oo eruption lavas. J Petrol 39:803–817CrossRefGoogle Scholar
  29. Geist D, Howard KA, Larson P (1995) The generation of oceanic rhyolites by crystal fractionation—the Basalt-Rhyolite Association at volcan-alcedo, Galapagos-Archipelago. J Petrol 36:965–982CrossRefGoogle Scholar
  30. Geist D, Naumann T, Larson P (1998) Evolution of Galapagos magmas: mantle and crustal fractionation without assimilation. J Petrol 39:953–971CrossRefGoogle Scholar
  31. Geist DJ, Naumann TR, Standish JJ, Kurz MD, Harpp KS, White WM, Fornari DJ (2005) Wolf volcano, Galapagos Archipelago: melting and magmatic evolution at the margins of a mantle plume. J Petrol 46:2197–2224CrossRefGoogle Scholar
  32. Geist DJ, Fornari DJ, Kurz MD, Harpp KS, Soule SA, Perfit MR, Koleszar AM (2006) Submarine fernandina: magmatism at the leading edge of the Galapagos hot spot. Geochem Geophys Geosyst 7Google Scholar
  33. Geist DJ, Snell H, Snell H, Goddard C, Kurz MD (2014) A paleogeographic model of the Galápagos islands and biogeographical and evolutionary implications. In: Harpp K, Mittelstaedt E, D’Ozouville N, Graham D (eds) The Galápagos: a natural laboratory for the earth sciences. American Geophysical Union, Washington, pp 145–166.  https://doi.org/10.1002/9781118852538.ch8 CrossRefGoogle Scholar
  34. Genske FS, Beier C, Haase KM, Turner SP, Krumm S, Brandl PA (2013) Oxygen isotopes in the Azores islands: crustal assimilation recorded in olivine. Geology 41:491–494CrossRefGoogle Scholar
  35. Gibson SA, Geist D (2010) Geochemical and geophysical estimates of lithospheric thickness variation beneath Galapagos. Earth Planet Sci Lett 300:275–286CrossRefGoogle Scholar
  36. Gibson SA, Geist DG, Day JA, Dale CW (2012) Short wavelength heterogeneity in the Galapagos plume: evidence from compositionally diverse basalts on Isla Santiago. Geochem Geophys Geosyst.  https://doi.org/10.1029/2012GC004244 CrossRefGoogle Scholar
  37. Graham DW, Christie DM, Harpp KS, Lupton JE (1993) Mantle plume helium in submarine basalts from the Galapagos platform. Science 262:2023–2026CrossRefGoogle Scholar
  38. Grant PR, Boag PT (1980) Rainfall on the Galapagos and the demography of Darwin’s finches. Auk 97:227–244Google Scholar
  39. Gregory RT, Criss RE (1986) Isotopic exchange in open and closed systems. Rev Mineral Geochem 16:91–127Google Scholar
  40. Gregory RT, Taylor HP Jr (1981) An oxygen isotope profile in a section of cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res Solid Earth 86:2737–2755CrossRefGoogle Scholar
  41. Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace-elements in Oib and Morb and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395CrossRefGoogle Scholar
  42. Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes (vol 272, pg 991, 1996). Science 272:1573–1573CrossRefGoogle Scholar
  43. Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193CrossRefGoogle Scholar
  44. Harmon RS, Hoefs J (1995) Oxygen-isotope heterogeneity of the mantle deduced from global O-18 systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114CrossRefGoogle Scholar
  45. Harpp KS, White WM (2001) Tracing a mantle plume: isotopic and trace element variations of Galapagos seamounts. Geochem Geophys Geosyst.  https://doi.org/10.1029/2000GC000137 CrossRefGoogle Scholar
  46. Harpp KS, Wirth KR, Korich DJ (2002) Northern Galapagos Province: hotspot-induced, near-ridge volcanism at Genovesa island. Geology 30:399–402CrossRefGoogle Scholar
  47. Harpp KS, Fornari DJ, Geist DJ, Kurz MD (2003) Genovesa submarine ridge: a manifestation of plume-ridge interaction in the northern Galapagos Islands. Geochem Geophys Geosyst.  https://doi.org/10.1029/2003GC000531 CrossRefGoogle Scholar
  48. Harpp K, Geist D, Koleszar AM, Christensen B, Lyons J, Sabga M, Rollins N (2014) The geology and geochemistry of Isla Floreana, Galápagos: a different type of late-stage ocean island volcanism. In: Harpp K, Mittelstaedt E, Graham DW, d’Ozouville N (eds) The Galapagos: a natural laboratory for the earth sciences, AGU monograph. American Geophysical Union, Washington, DC, pp 71–117Google Scholar
  49. Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough island lavas: variation with fractional crystallization and evidence for assimilation. Contrib Mineral Petrol 138:164–175CrossRefGoogle Scholar
  50. Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment—isotopic evidence. Science 256:517–520CrossRefGoogle Scholar
  51. Hart SR, Blusztajn J, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-m section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080CrossRefGoogle Scholar
  52. Kent AJR, Stolper EM, Francis D, Woodhead J, Frei R, Eiler J (2004) Mantle heterogeneity during the formation of the North Atlantic Igneous Province: constraints from trace element and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem Geophys Geosyst.  https://doi.org/10.1029/2004GC000743 CrossRefGoogle Scholar
  53. Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287:442–452CrossRefGoogle Scholar
  54. Kurz MD, Geist D (1999) Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim Cosmochim Acta 63:4139–4156CrossRefGoogle Scholar
  55. Kurz MD, Jenkins WJ, Hart SR (1982) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297:43–47CrossRefGoogle Scholar
  56. Kurz MD, Curtice J, Fornari D, Geist D, Moreira M (2009) Primitive neon from the center of the Galapagos hotspot. Earth Planet Sci Lett 286:23–34CrossRefGoogle Scholar
  57. Lange RA, Carmichael ISE (1987) Densities of Na2o-K2o-Cao-Mgo-Feo-Fe2o3-Al2o3-Tio2-Sio2 liquids—new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946CrossRefGoogle Scholar
  58. Lea DW, Pak DK, Belanger CL, Spero HJ, Hall MA, Shackleton NJ (2006) Paleoclimate history of Galapagos surface waters over the last 135,000 year. Quat Sci Rev 25:1152–1167CrossRefGoogle Scholar
  59. Lecuyer C, Fourcade S (1991) Oxygen isotope evidence for multi-stage hydrothermal alteration at a fossil slow-spreading center: the silurian trinity ophiolite (California, USA). Chem Geol Isotope Geosci Sect 87:231–246CrossRefGoogle Scholar
  60. Mattey D, Lowry D, Macpherson C (1994) Oxygen-isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  61. Muehlenbachs K (1986) Alteration of the oceanic crust and the 18 O history of seawater. Rev Mineral Geochem 16:425–444Google Scholar
  62. Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem Geol 145:263–273CrossRefGoogle Scholar
  63. Muehlenbachs K, Byerly G (1982) 18O-enrichment of silicic magmas caused by crystal fractionation at the Galapagos spreading center. Contrib Mineral Petrol 79:76–79CrossRefGoogle Scholar
  64. Muehlenbachs K, Clayton RN (1976) Oxygen isotope composition of oceanic-crust and its bearing on seawater. J Geophys Res 81:4365–4369CrossRefGoogle Scholar
  65. Peterson M, Saal A, Nakamura E, Kitagawa H, Kurz M, Koleszar A (2014) Origin of the ‘Ghost Plagioclase’ signature in Galapagos melt inclusions: new evidence from Pb isotopes. J Petrol 55:2193–2216CrossRefGoogle Scholar
  66. Peterson ME, Saal AE, Kurz M, Hauri EH, Blusztajn J, Harpp K, Werner R, Geist D (2017) Submarine basaltic glasses from the Galapagos Archipelago: determining the volatile budget of the mantle plume. J Petrol 58(7):1419–1450CrossRefGoogle Scholar
  67. Reynolds RW, Geist DJ (1995) Petrology of lavas from Sierra Negra volcano, Isabela island, Galápagos archipelago. J Geophys Res 100:24537–24553CrossRefGoogle Scholar
  68. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):Q03014.  https://doi.org/10.1029/2008GC002332 CrossRefGoogle Scholar
  69. Saal AE, Kurz MD, Hart SR, Blusztajn JS, Blichert-Toft J, Liang Y, Geist DJ (2007) The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet Sci Lett 257:391–406CrossRefGoogle Scholar
  70. Schilling JG, Fontignie D, Blichert-Toft J, Kingsley R, Tomza U (2003) Pb-Hf-Nd-Sr isotope variations along the Galapagos spreading center (101°–83°W): constraints on the dispersal of the Galapagos mantle plume. Geochem Geophys Geosyst 4(10):8512.  https://doi.org/10.1029/2002GC000495
  71. Sharp ZD (1990) A laser-based microanalytical method for the insitu determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357CrossRefGoogle Scholar
  72. Skovgaard AC, Storey M, Baker J, Blusztajn J, Hart SR (2001) Osmium-oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet Sci Lett 194:259–275CrossRefGoogle Scholar
  73. Sobolev AV, Hofmann AW, Nikogosian IK (2000) Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas. Nature 404:986–990CrossRefGoogle Scholar
  74. Stakes DS, Taylor HP Jr (1992) The northern Samail ophiolite: an oxygen isotope, microprobe, and field study. J Geophys Res Solid Earth 97:7043–7080CrossRefGoogle Scholar
  75. Taylor HP Jr, Epstein S (1962) Relationship between O^(18)/O^(16) ratios in coexisting minerals of igneous and metamorphic rocks. Part 2. application to petrologic problems. Geol Soc Am Bull 73:675–693CrossRefGoogle Scholar
  76. Taylor HP, Forester RW (1979) Oxygen and hydrogen isotope study of the skaergaard intrusion and its country rocks—description of a 55-million-year old fossil hydrothermal system. J Petrol 20:355–419CrossRefGoogle Scholar
  77. Taylor HP, Sheppard SM (1986) Igneous rocks; I, processes of isotopic fractionation and isotope systematics. Rev Mineral Geochem 16:227–271Google Scholar
  78. Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low δ18O in the Icelandic mantle and its origins: evidence from Reykjanes ridge and icelandic lavas. Geochim Cosmochim Acta 70:993–1019CrossRefGoogle Scholar
  79. Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res 67:26–37Google Scholar
  80. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  81. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  82. Villagomez DR, Toomey DR, Hooft EEE, Solomon SC (2007) Upper mantle structure beneath the Galapagos Archipelago from surface wave tomography. J Geophys Res Solid Earth.  https://doi.org/10.1029/2006JB004672 CrossRefGoogle Scholar
  83. Villagomez DR, Toomey DR, Hooft EEE, Solomon SC (2011) Crustal structure beneath the Galapagos Archipelago from ambient noise tomography and its implications for plume-lithosphere interactions. J Geophys Res Solid Earth.  https://doi.org/10.1029/2010JB007764 CrossRefGoogle Scholar
  84. Villagomez DR, Toomey DR, Geist DJ, Hooft EEE, Solomon SC (2014) Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nat Geosci 7:151–156CrossRefGoogle Scholar
  85. Violette S, d’Ozouville N, Pryet A, Deffontaines B, Fortin J, Adelinet M (2014) Hydrogeology of the Galapagos Archipelago: an integrated and comparative approach between islands. Geophysical monograph series. Wiley, Hoboken, pp 167–183Google Scholar
  86. Wang ZR, Eiler JA (2008) Insights into the origin of low-delta O-18 basaltic magmas in Hawaii revealed from in situ measurements of oxygen isotope compositions of olivines. Earth Planet Sci Lett 269:376–386CrossRefGoogle Scholar
  87. Wang ZG, Kitchen NE, Eiler JM (2003) Oxygen isotope geochemistry of the second HSDP core. Geochem Geophys Geosyst 4(8):8712.  https://doi.org/10.1029/2002GC000406 CrossRefGoogle Scholar
  88. Wang Z, Eiler JM, Asimow PD, Garcia MO, Takahashi E (2010) Oxygen isotope constraints on the structure and evolution of the Hawaiian Plume. Am J Sci 310:683–720CrossRefGoogle Scholar
  89. Wanless V, Perfit M, Ridley W, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51:2377–2410CrossRefGoogle Scholar
  90. White WM, Mcbirney AR, Duncan RA (1993) Petrology and geochemistry of the Galapagos-Islands—portrait of a pathological mantle plume. J Geophys Res Solid Earth 98:19533–19563CrossRefGoogle Scholar
  91. Workman RK, Eiler JM, Hart SR, Jackson MG (2008) Oxygen isotopes in Samoan lavas: confirmation of continent recycling. Geology 36:551–554CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Earth and Atmospheric SciencesThe City College of New York, CUNYNew YorkUSA
  3. 3.Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceUSA
  4. 4.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations