Advertisement

Effects of multi-stage rifting and metasomatism on HSE-187Os/188Os systematics of the cratonic mantle beneath SW Greenland

  • Sonja AulbachEmail author
  • Jing Sun
  • Sebastian Tappe
  • Axel Gerdes
Original Paper
  • 86 Downloads

Abstract

We report highly siderophile element (HSE) abundances and Re–Os isotope compositions, obtained by isotope dilution inductively coupled plasma mass spectrometry, of olivine separates from a suite of multiply metasomatised peridotite xenoliths entrained in kimberlites from SW Greenland. Combined with petrographic and compositional observations on accessory base metal sulphides (BMS), the results reveal new insights into the chemical, physical and mineralogical effects of multi-stage rifting and associated melt percolation on the Archaean lithospheric mantle. Refertilised lherzolites are dominated by rare to frequent small (tens of µm) BMS inclusions in olivine, whereas modally metasomatised phlogopite-bearing lherzolite and wehrlites have higher proportions of more Ni-rich BMS, including abundant large interstitial grains (hundreds of µm). The olivine separates display depleted HSE systematics with Primitive Upper Mantle (PUM)-normalised Pd/Ir of 0.014–0.62, and have both depleted and enriched 187Os/188Os (0.1139–0.2724) relative to chondrite that are not correlated with 187Re/188Os. Four out of ten olivine separates retain similarly depleted Os corresponding to Re-depletion model ages of 2.1–1.8 Ga. They may reflect Palaeoproterozoic refertilisation (lherzolitisation) during Laurentia plate assembly, with re-introduction of clinopyroxene and Os-rich BMS into the originally refractory mantle lithosphere by asthenosphere-derived basaltic melts, followed by recrystallisation and occlusion in olivine. Unradiogenic Os is observed regardless of lithology, including from peridotites that contain abundant interstitial BMS. This reflects addition of Os-poor BMS (<< 1 ppm) during more recent wehrlitisation and phlogopite-introduction, and control of the Os isotopic signature by older Os-rich BMS that precipitated from the basaltic melt. Depletions in compatible HSE (< 0.5 × PUM for Ru, Ir, Os) in all but one olivine separate reflect nugget effects (amount of depleted vs. metasomatic BMS inclusions) and/or loss due to sulphide dissolution into oxidising small-volume melts that invaded the lithosphere during recurrent rifting, the latter supported by similar depletions in published bulk peridotite data. Combined, these multiple metasomatic events destroyed all vestiges of Mesoarchaean or older inheritance in the olivine separates investigated here, and highlight that caution is needed when interpreting Proterozoic Os model ages in terms of Proterozoic lithosphere stabilisation.

Keywords

Subcontinental lithosphere Mantle metasomatism Platinum-group elements Highly siderophile elements Base metal sulphides 

Notes

Acknowledgements

We thank Maximilian Engel and Theodoros Potouridis for help with sulphide characterisation and the high-pressure asher, respectively. Troels Nielsen is gratefully acknowledged for making the specimens available from the GEUS rock storage facility. Incisive and constructive reviews by Kristoffer Szilas and an anonymous reviewer as well as editorial comments by Chris Ballhaus greatly improved the manuscript. The German Research Foundation (DFG) is thanked for support under grant GE1152/9. Part of this work was carried out during JS’s research stay in Germany, which was supported by the German Academic Exchange Service (DAAD). ST acknowledges support by the Geological Survey of Denmark and Greenland, and by the DST-NRF CIMERA Centre of Excellence at the University of Johannesburg, South Africa.

Supplementary material

410_2019_1549_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4834 KB)
410_2019_1549_MOESM2_ESM.xlsx (100 kb)
Supplementary material 2 (XLSX 100 KB)
410_2019_1549_MOESM3_ESM.pdf (27.4 mb)
Supplementary material 3 (PDF 28108 KB)
410_2019_1549_MOESM4_ESM.xlsx (116 kb)
Supplementary material 4 (XLSX 116 KB)
410_2019_1549_MOESM5_ESM.xlsx (11 kb)
Supplementary material 5 (XLSX 11 KB)

References

  1. Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407(6806):891–894CrossRefGoogle Scholar
  2. Alard O, Lorand JP, Reisberg L, Bodinier JL, Dautria JM, O’Reilly SY (2011) Volatile-rich metasomatism in montferrier xenoliths (Southern France): implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle. J Petrol 52(10):2009–2045.  https://doi.org/10.1093/petrology/egr038 CrossRefGoogle Scholar
  3. Arndt NT, Guitreau M, Boullier AM, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51(3):573–602.  https://doi.org/10.1093/petrology/egp080 CrossRefGoogle Scholar
  4. Aulbach S (2019) Cratonic Lithosphere Discontinuities: Dynamics of Small-Volume Melting, Meta-Cratonisation and a Possible Role for Brines. In:  Yuan H, Romanowicz B (eds) Lithospheric discontinuities. Geophysical monograph, vol 239. American Geophysical Union, Washington DC, pp 177–204Google Scholar
  5. Aulbach S, Stachel T, Creaser RA, Heaman LM, Shirey SB, Muehlenbachs K, Eichenberg D, Harris JW (2009) Sulphide survival and diamond genesis during formation and evolution of Archaean subcontinental lithosphere: a comparison between the Slave and Kaapvaal cratons. Lithos 112:747–757.  https://doi.org/10.1016/j.lithos.2009.03.048 CrossRefGoogle Scholar
  6. Aulbach S, Stachel T, Seitz H-M, Brey GP (2012) Chalcophile and siderophile elements in sulphide inclusions in eclogitic diamonds and metal cycling in a Paleoproterozoic subduction zone. Geochim Cosmochim Acta 93:278–299.  https://doi.org/10.1016/j.gca.2012.04.027 CrossRefGoogle Scholar
  7. Aulbach S, Luchs T, Brey GP (2014) Distribution and behaviour during metasomatism of PGE-Re and Os isotopes in off-craton mantle xenoliths from Namibia. Lithos 184:478–490.  https://doi.org/10.1016/j.lithos.2013.09.003 CrossRefGoogle Scholar
  8. Aulbach S, Mungall JE, Pearson DG (2016) Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. In: Harvey J, Day JMD (eds) Highly siderophile and strongly chalcophile elements in high-temperature geochemistry and cosmochemistry, vol 81. Mineralogical Society of America, USA, pp 239–304Google Scholar
  9. Aulbach S, Sun J, Tappe S, Hofer HE, Gerdes A (2017) Volatile-rich metasomatism in the cratonic mantle beneath SW Greenland: link to kimberlites and mid-lithospheric discontinuities. J Petrol 58(12):2311–2338.  https://doi.org/10.1093/petrology/egy009 CrossRefGoogle Scholar
  10. Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70(17):4528–4550CrossRefGoogle Scholar
  11. Bennett VC, Nutman AP, Esat TM (2002) Constraints on mantle evolution from Os-187/Os-188 isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga). Geochim Cosmochim Acta 66(14):2615–2630.  https://doi.org/10.1016/s0016-7037(02)00862-1 CrossRefGoogle Scholar
  12. Bennett VC, Brandon AD, Nutman AP (2007) Coupled Nd-142-Nd-143 isotopic evidence for Hadean mantle dynamics. Science 318(5858):1907–1910.  https://doi.org/10.1126/science.1145928 CrossRefGoogle Scholar
  13. Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in tertiary dykes from east Greenland: restites from high degree melting. Earth Planet Sci Lett 154(1–4):221–235CrossRefGoogle Scholar
  14. Bernstein S, Hanghoj K, Kelemen PB, Brooks CK (2006) Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Contrib Mineral Petrol 152(3):335–347.  https://doi.org/10.1007/s00410-006-0109-0 CrossRefGoogle Scholar
  15. Bernstein S, Kelemenl PB, Hanghoj K (2007) Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35(5):459–462.  https://doi.org/10.1130/g23336a.1 CrossRefGoogle Scholar
  16. Bernstein S, Szilas K, Kelemen PB (2013) Highly depleted cratonic mantle in West Greenland extending into diamond stability field in the Proterozoic. Lithos 168:160–172.  https://doi.org/10.1016/j.lithos.2013.02.011 CrossRefGoogle Scholar
  17. Bizzarro M, Stevenson RK (2003) Major element composition of the lithospheric mantle under the North Atlantic craton: evidence from peridotite xenoliths of the Sarfartoq area, southwestern Greenland. Contrib Mineral Petrol 146(2):223–240.  https://doi.org/10.1007/s00410-003-0499-1 CrossRefGoogle Scholar
  18. Bockrath C, Ballhaus C, Holzheid A (2004) Fractionation of the platinum-group elements during mantle melting. Science 305(5692):1951–1953CrossRefGoogle Scholar
  19. Brenan JM (2008) Re–Os fractionation by sulfide melt-silicate melt partitioning: a new spin. Chem Geol 248(3–4):140–165.  https://doi.org/10.1016/j.chemgeo.2007.09.003 CrossRefGoogle Scholar
  20. Brenan JM, Finnigan CF, McDonough WF, Homolova V (2012) Experimental constraints on the partitioning of Ru, Rh, Ir, Pt and Pd between chromite and silicate melt: the importance of ferric iron. Chem Geol 302:16–32CrossRefGoogle Scholar
  21. Burton KW, Schiano P, Birck JL, Allegre CJ, Rehkamper M, Halliday AN, Dawson JB (2000) The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania. Earth Planet Sci Lett 183(1–2):93–106CrossRefGoogle Scholar
  22. Burton KW, Gannoun A, Birck JL, Allegre CJ, Schiano P, Clocchiatti R, Alard O (2002) The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt genesis. Earth Planet Sci Lett 198(1–2):63–76.  https://doi.org/10.1016/s0012-821x(02)00518-6 CrossRefGoogle Scholar
  23. Chu ZY, Yan Y, Zeng G, Tian W, Li CF, Yang YH, Guo JH (2017) Petrogenesis of Cenozoic basalts in central-eastern China: constraints from Re–Os and PGE geochemistry. Lithos 278:72–83.  https://doi.org/10.1016/j.lithos.2017.01.022 CrossRefGoogle Scholar
  24. Coggon JA, Luguet A, Nowell GM, Appel PWU (2013) Hadean mantle melting recorded by southwest Greenland chromitite Os-186 signatures. Nat Geosci 6(10):871–874.  https://doi.org/10.1038/ngeo1911 CrossRefGoogle Scholar
  25. Craig JR (1973) Pyrite-pentlandite assemblages and other low-temperature relations in Fe–Ni–S system. Am J Sci A273:496–510Google Scholar
  26. Emeleus CH, Andrews JR (1975) Mineralogy and petrology of kimberlite dyke and sheet intrusions and included peridotite xenoliths from south-west Greenland. Phys Chem Earth 9:179–198CrossRefGoogle Scholar
  27. Fleet ME, Crocket JH, Stone WE (1996) Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim Cosmochim Acta 60(13):2397–2412.  https://doi.org/10.1016/0016-7037(96)00100-7 CrossRefGoogle Scholar
  28. Foley SF (2011) A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol 52(7–8):1363–1391.  https://doi.org/10.1093/petrology/egq061 CrossRefGoogle Scholar
  29. Fortin MA, Riddle J, Desjardins-Langlais Y, Baker DR (2015) The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts. Geochim Cosmochim Acta 160:100–116.  https://doi.org/10.1016/j.gca.2015.03.022 CrossRefGoogle Scholar
  30. Frei D, Hutchison MT, Gerdes A, Heaman LM (2008) Common-lead corrected U–Pb age dating of perovskite by laser ablation—magnetic sectorfield ICP-MS. In: 9th international kimberlite conference, vol extended abstract. Frankfurt am Main, Germany, p 9IKC-A-00216Google Scholar
  31. Garde AA, Hamilton MA, Chadwick B, Grocott J, McCaffrey KJW (2002) The Ketilidian orogen of South Greenland: geochronology, tectonics magmatism and fore-arc accretion during Palaeoproterozoic oblique convergence. Can J Earth Sci 39(5):765–793CrossRefGoogle Scholar
  32. Godel B, Barnes SJ (2008) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): implication for the formation of the reef. Chem Geol 248(3–4):272–294.  https://doi.org/10.1016/j.chemgeo.2007.05.006 CrossRefGoogle Scholar
  33. Gonzalez-Jimenez JM, Villaseca C, Griffin WL, O’Reilly SY, Belousova E, Ancochea E, Pearson NJ (2014) Significance of ancient sulfide PGE and Re–Os signatures in the mantle beneath Calatrava, Central Spain. Contrib Mineral Petrol.  https://doi.org/10.1007/s00410-014-1047-x CrossRefGoogle Scholar
  34. Griffin WL, Spetsius ZV, Pearson NJ, O’Reilly SY (2002) In situ Re–Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochem Geophys Geosyst 3:1069Google Scholar
  35. Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the north American plate. Lithos 77(1–4):873–922.  https://doi.org/10.1016/j.lithos.2004.03.034 CrossRefGoogle Scholar
  36. Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) A2. GLITTER: data reduction software for laser ablation ICP–MS. In: Sylvester P (ed) Laser ablation-ICPMS in the Earth sciences: current practices and outstanding issues, vol 40. Mineralogical Association of Canada, Vancouver, p 356Google Scholar
  37. Hanghøj K, Kelemen P, Bernstein S, Blusztajn J, Frei R (2001) Osmium isotopes in the Wiedemann Fjord mantle xenoliths: a unique record of cratonic mantle formation by melt depletion in the Archaean. Geochem Geophys Geosyst 2:2000GC000085CrossRefGoogle Scholar
  38. Helmy HM, Bragagni A (2017) Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 degrees C. Geochim Cosmochim Acta 216:169–183.  https://doi.org/10.1016/j.gca.2017.01.040 CrossRefGoogle Scholar
  39. Helmy HM, Ballhaus C, Wohlgemuth-Ueberwasser C, Fonseca ROC, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt—application to magmatic sulfide deposits. Geochim Cosmochim Acta 74(21):6174–6179.  https://doi.org/10.1016/j.gca.2010.08.009 CrossRefGoogle Scholar
  40. Hoffman PF (1989) Precambrian geology and tectonic history of North America. In: Bally AW, Palmer AR (eds) The geology of North America—an overview, vol Geological Society of America, Boulder, pp 447–512CrossRefGoogle Scholar
  41. Horan MF, Walker RJ, Morgan JW, Grossman JN, Rubin AE (2003) Highly siderophile elements in chondrites. Chem Geol 196(1–4):5–20.  https://doi.org/10.1016/s0009-2541(02)00405-9 CrossRefGoogle Scholar
  42. Hutchison MT, Heaman LM (2008) Chemical and physical characteristics of diamond crystals from Garnet Lake, Sarfartoq, West Greenland: an association with carbonatitic magmatism. Can Mineral 46:1063–1078.  https://doi.org/10.3749/canmin.46.4.1063 CrossRefGoogle Scholar
  43. Hutchison MT, Nielsen LJ, Bernstein S (2007) P-T history of kimberlite-hosted garnet lherzolites from South-West Greenland. Geol Surv Den Greenl Bull 13:45–48Google Scholar
  44. Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37(5):415–418.  https://doi.org/10.1130/g25527a.1 CrossRefGoogle Scholar
  45. Keays RR (1995) The role of komatiitic and picritic magmatism and S-saturation in the formation of ore-deposits. Lithos 34(1–3):1–18CrossRefGoogle Scholar
  46. König S, Lorand JP, Luguet A, Pearson DG (2014) A non-primitive origin of near-chondritic S–Se–Te ratios in mantle peridotites; implications for the Earth’s late accretionary history. Earth Planet Sci Lett 385:110–121.  https://doi.org/10.1016/j.epsl.2013.10.036 CrossRefGoogle Scholar
  47. Larsen LM, Heaman LM, Creaser RA, Duncan RA, Frei R, Hutchison M (2009) Tectonomagmatic events during stretching and basin formation in the Labrador Sea and the Davis Strait: evidence from age and composition of Mesozoic to Palaeogene dyke swarms in West Greenland. J Geol Soc 166:999–1012.  https://doi.org/10.1144/0016-76492009-038 CrossRefGoogle Scholar
  48. Liu J, Brin LE, Pearson DG, Bretschneider L, Luguet A, van Acken D, Kjarsgaard B, Riches A, Mišković A (2018) Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: a study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochim Cosmochim Acta 239:284–311CrossRefGoogle Scholar
  49. Lorand JP (1989) Sulfide petrology of spinel and garnet pyroxenite layers from mantle-derived spinel lherzolite massifs of Ariège, Northeastern Pyrenees, France. J Petrol 30(4):987–1015CrossRefGoogle Scholar
  50. Lorand JP, Grégoire M (2006) Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South Africa). Contrib Mineral Petrol 151(5):521–538.  https://doi.org/10.1007/s00410-006-0074-7 CrossRefGoogle Scholar
  51. Lorand JP, Reisberg L, Bedini RM (2003) Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift. Chem Geol 196(1–4):57–75.  https://doi.org/10.1016/s0009-2541(02)00407-2 CrossRefGoogle Scholar
  52. Lorand JP, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164:2–21.  https://doi.org/10.1016/j.lithos.2012.08.017 CrossRefGoogle Scholar
  53. Luguet A, Alard O, Lorand JP, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189(3–4):285–294CrossRefGoogle Scholar
  54. Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP, Roffey SL, Rayner MJ, Lorand JP (2009) An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112:1096–1108.  https://doi.org/10.1016/j.lithos.2009.05.022 CrossRefGoogle Scholar
  55. McInnes BIA, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore metal recycling in subduction zones. Science 286(5439):512–516CrossRefGoogle Scholar
  56. Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208(1–4):319–338.  https://doi.org/10.1016/j.chemgeo.2004.04.019 CrossRefGoogle Scholar
  57. Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65(8):1311–1323CrossRefGoogle Scholar
  58. Meisel T, Fellner N, Moser J (2003) A simple procedure for the determination of platinum group elements and rhenium (Ru, Rh, Pd, Re, Os, Ir and Pt) using ID-ICP-MS with an inexpensive on-line matrix separation in geological and environmental materials. J Anal At Spectrom 18(7):720–726.  https://doi.org/10.1039/b301754k CrossRefGoogle Scholar
  59. Mitchell RH, Keays RR (1981) Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites—implications for the nature and origin of precious metal-rich intergranular components in the upper mantle. Geochim Cosmochim Acta 45(12):2425–2442.  https://doi.org/10.1016/0016-7037(81)90096-x CrossRefGoogle Scholar
  60. Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289.  https://doi.org/10.1016/j.gca.2013.10.002 CrossRefGoogle Scholar
  61. Nielsen LJ, Hutchison MT, Malarkey J (2008) Geothermal constraints from kimberlite-hosted garnet lherzolites from southern Greenland. In: 9th International Kimberlite conference, Frankfurt, Germany, p 9IKC-A-00047Google Scholar
  62. Nilsson MKM, Klausen MB, Söderlund U, Ernst RE (2013) Precise U–Pb ages and geochemistry of Palaeoproterozoic mafic dykes from southern West Greenland: linking the North Atlantic and the Dharwar. Lithos 174:255–270CrossRefGoogle Scholar
  63. Park J-W, Campbell IH, Arculus RJ (2013) Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: evidence from the Pual Ridge lavas, the Eastern Manus Basin. Geochim Cosmochim Acta 101:76–95.  https://doi.org/10.1016/j.gca.2012.10.001 CrossRefGoogle Scholar
  64. Pearson DG, Wittig N (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J Geol Soc 165:895–914CrossRefGoogle Scholar
  65. Pearson DG, Wittig N (2014) The formation and evolution of cratonic mantle lithosphere—evidence from mantle xenoliths. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 2. Elsevier Ltd., Amsterdam, pp 255–292CrossRefGoogle Scholar
  66. Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59(5):959–977Google Scholar
  67. Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449(7159):202–205.  https://doi.org/10.1038/nature06122 CrossRefGoogle Scholar
  68. Pernet-Fisher JF, Howarth GH, Pearson DG, Woodland S, Barry PH, Pokhilenko NP, Pokhilenko LN, Agashev AM, Taylor LA (2015) Plume impingement on the Siberian SCLM: Evidence from Re–Os isotope systematics. Lithos 218:141–154.  https://doi.org/10.1016/j.lithos.2015.01.010 CrossRefGoogle Scholar
  69. Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68(4):867–880.  https://doi.org/10.1016/j.gca.2003.07.005 CrossRefGoogle Scholar
  70. Righter K, Chesley JT, Calazza CM, Gibson EK Jr, Ruiz J (2008) Re and Os concentrations in arc basalts: the roles of volatility and source region fO(2) variations. Geochim Cosmochim Acta 72(3):926–947.  https://doi.org/10.1016/j.gca.2007.11.024 CrossRefGoogle Scholar
  71. Sand KK, Waight TE, Pearson DG, Nielsen TFD, Makovicky E, Hutchison MT (2009) The lithospheric mantle below southern West Greenland: a geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos 112:1155–1166.  https://doi.org/10.1016/j.lithos.2009.05.012 CrossRefGoogle Scholar
  72. Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500.  https://doi.org/10.1146/annurev.earth.26.1.423 CrossRefGoogle Scholar
  73. Smit KV, Pearson DG, Stachel T, Seller M (2014) Peridotites from Attawapiskat, Canada: mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the northern superior superterrane. J Petrol 55(9):1829–1863.  https://doi.org/10.1093/petrology/egu043 CrossRefGoogle Scholar
  74. Szilas K, Van Hinsberg VJ, Creaser RA, Kisters AFM (2014) The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle? Lithos 198:103–116.  https://doi.org/10.1016/j.lithos.2014.03.024 CrossRefGoogle Scholar
  75. Tappe S, Foley SF, Stracke A, Romer RL, Kjarsgaard BA, Heaman LM, Joyce N (2007) Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet Sci Lett 256(3–4):433–454.  https://doi.org/10.1016/j.epsl.2007.01.036 CrossRefGoogle Scholar
  76. Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72(13):3258–3286.  https://doi.org/10.1016/j.gca.2008.03.008 CrossRefGoogle Scholar
  77. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011a) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106CrossRefGoogle Scholar
  78. Tappe S, Pearson DG, Nowell G, Nielsen T, Milstead P, Muehlenbachs K (2011b) A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet Sci Lett 305(1–2):235–248.  https://doi.org/10.1016/j.epsl.2011.03.005 CrossRefGoogle Scholar
  79. Tappe S, Steenfelt A, Nielsen T (2012) Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: new high-precision U–Pb and Sr–Nd isotope data on perovskite. Chem Geol 320:113–127.  https://doi.org/10.1016/j.chemgeo.2012.05.026 CrossRefGoogle Scholar
  80. Tappe S, Romer RL, Stracke A, Steenfelt A, Smart KA, Muehlenbachs K, Torsvik TH (2017) Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet Sci Lett 466:152–167.  https://doi.org/10.1016/j.epsl.2017.03.011 CrossRefGoogle Scholar
  81. van Acken D, Becker H, Walker RJ, McDonough WF, Wombacher F, Ash RD, Piccoli PM (2010) Formation of pyroxenite layers in the Totalp ultramafic, massif (Swiss Alps)—insights from highly siderophile elements and Os isotopes. Geochim Cosmochim Acta 74(2):661–683.  https://doi.org/10.1016/j.gca.2009.10.007 CrossRefGoogle Scholar
  82. van Acken D, Luguet A, Pearson DG, Nowell GM, Fonseca ROC, Nagel TJ, Schulz T (2017) Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland. Geochim Cosmochim Acta 203:37–53.  https://doi.org/10.1016/j.gca.2017.01.006 CrossRefGoogle Scholar
  83. Wainwright AN, Luguet A, Fonseca ROC, Pearson DG (2015) Investigating metasomatic effects on the Os-187 isotopic signature: a case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos 232:35–48.  https://doi.org/10.1016/j.lithos.2015.06.017 CrossRefGoogle Scholar
  84. Walter MJ (2014) Melt extraction and compositional variability in mantle lithosphere. In: Holland HD, Turekian KK, Carlson RW (eds) Treatise on geochemistry (2nd edition) volume 3: the mantle and the core, vol 3. Elsevier Pergamon, Amsterdam, pp 393–419CrossRefGoogle Scholar
  85. Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17(4):406–409.  https://doi.org/10.1039/b108787h CrossRefGoogle Scholar
  86. Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth Sci Rev 93(1–2):1–30.  https://doi.org/10.1016/j.earscirev.2008.12.001 CrossRefGoogle Scholar
  87. Wittig N, Pearson DG, Webb M, Ottley CJ, Irvine GJ, Kopylova M, Jensen SM, Nowell GM (2008) Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet Sci Lett 274(1–2):24–33.  https://doi.org/10.1016/j.epsl.2008.06.034 CrossRefGoogle Scholar
  88. Wittig N, Webb M, Pearson DG, Dale CW, Ottley CJ, Hutchison M, Jensen SM, Luguet A (2010) Formation of the North Atlantic Craton: timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from SW Greenland. Chem Geol 276(3–4):166–187.  https://doi.org/10.1016/j.chemgeo.2010.06.002 CrossRefGoogle Scholar
  89. Wohlgemuth-Ueberwasser CC, Ballhaus C, Berndt J, Paliulionyte VSN, Meisel T (2007) Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib Mineral Petrol 154:607–617.  https://doi.org/10.1007/s00410-007-0212-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenGoethe UniversitätFrankfurtGermany
  2. 2.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of GeologyUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations