Advertisement

Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution

  • Adam AbersteinerEmail author
  • Vadim S. Kamenetsky
  • Karsten Goemann
  • Alexander V. Golovin
  • Igor S. Sharygin
  • Andrea Giuliani
  • Thomas Rodemann
  • Zdislav V. Spetsius
  • Maya Kamenetsky
Original Paper
  • 120 Downloads

Abstract

Djerfisherite (K6(Fe,Ni,Cu)25S26Cl) occurs as an accessory phase in the groundmass of many kimberlites, kimberlite-hosted mantle xenoliths, and as a daughter inclusion phase in diamonds and kimberlitic minerals. Djerfisherite typically occurs as replacement of pre-existing Fe–Ni–Cu sulphides (i.e. pyrrhotite, pentlandite and chalcopyrite), but can also occur as individual grains, or as poikilitic phase in the groundmass of kimberlites. In this study, we present new constraints on the origin and genesis of djerfisherite in kimberlites and their entrained xenoliths. Djerfisherite has extremely heterogeneous compositions in terms of Fe, Ni and Cu ratios. However, there appears to be no distinct compositional range of djerfisherite indicative of a particular setting (i.e. kimberlites, xenoliths or diamonds), rather this compositional diversity reflects the composition of the host kimberlite melt and/or interacting metasomatic medium. In addition, djerfisherite may contain K and Cl contents less than the ideal formula unit. Raman spectroscopy and electron backscatter diffraction (EBSD) revealed that these K–Cl poor sulphides still maintain the same djerfisherite crystal structure. Two potential mechanisms for djerfisherite formation are considered: (1) replacement of pre-existing Fe–Ni–Cu sulphides by djerfisherite, which is attributed to precursor sulphides reacting with metasomatic K–Cl bearing melts/fluids in the mantle or the transporting kimberlite melt; (2) direct crystallisation of djerfisherite from the kimberlite melt in groundmass or due to kimberlite melt infiltration into xenoliths. The occurrence of djerfisherite in kimberlites and its mantle cargo from localities worldwide provides strong evidence that the metasomatising/infiltrating kimberlite melt/fluid was enriched in K and Cl. We suggest that kimberlites originated from melts that were more enriched in alkalis and halogens relative to their whole-rock compositions.

Keywords

Djerfisherite Kimberlite Sulphides Metasomatism Potassium Chlorine Diamond 

Notes

Acknowledgements

The constructive comments by Keith Putirka and the five anonymous reviewers contributed to improving this manuscript and are gratefully acknowledged. This study has benefited from the efficient editorial handling by Chris Ballhaus. This study forms part of A.A’s Ph.D. and was supported by the Australian Postgraduate Award (APA). We thank Sergei Kostrovitsky for sharing wehrlite sample UV01-332. This is contribution 1232 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1271 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au). This work was supported by funding by Australian Research Council (ARC) Discovery Grant (DP130100257, 2013–2015) and University of Tasmania (New Star Professorship, 2010–2014) to V. Kamenetsky. AVG and IS were supported by the Russian state assignment project No 0330-2019-0009 and Russian Foundation for Basic Research (Grant no. 16-35-60052 mol_a_dk). AG receives funding from the ARC through a DECRA fellowship (Grant no. DE-150100009).

Supplementary material

410_2018_1540_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 KB)
410_2018_1540_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 KB)
410_2018_1540_MOESM3_ESM.pptx (6.7 mb)
Supplementary material 3 (PPTX 6845 KB)
410_2018_1540_MOESM4_ESM.xlsx (250 kb)
Supplementary material 4 (XLSX 250 KB)

References

  1. Abersteiner A, Giuliani A, Kamenetsky VS, Phillips D (2017a) Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem Geol 455:331–341.  https://doi.org/10.1016/j.chemgeo.2016.08.029 CrossRefGoogle Scholar
  2. Abersteiner A, Kamenetsky VS, Pearson DG, Kamenetsky M, Goemann K, Ehrig K, Rodemann T (2017b) Monticellite in group-I kimberlites: implications for evolution of parental melts and post-emplacement CO 2 degassing. Chem Geol 478:76–88.  https://doi.org/10.1016/j.chemgeo.2017.06.037 CrossRefGoogle Scholar
  3. Abersteiner A, Kamenetsky VS, Kamenetsky M, Goemann K, Ehrig K, Rodemann T (2017c) Significance of halogens (F, Cl) in kimberlite melts: insights from mineralogy and melt inclusions in the Roger pipe (Ekati, Canada). Chem Geol 478:148–163.  https://doi.org/10.1016/j.chemgeo.2017.06.008 CrossRefGoogle Scholar
  4. Abersteiner A, Kamenetsky VS, Golovin AV, Kamenetsky M, Goemann K (2018) Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration. J Petrol.  https://doi.org/10.1093/petrology/egy068 CrossRefGoogle Scholar
  5. Afanasyev AA, Melnik O, Porritt L, Schumacher JC, Sparks RSJ (2014) Hydrothermal alteration of kimberlite by convective flows of external water. Contrib Mineral Petrol 168:1038–1055.  https://doi.org/10.1007/s00410-014-1038-y CrossRefGoogle Scholar
  6. Araújo DP, Griffin WL, Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik. Slave Craton Lithos 112(2):675 – 682.  https://doi.org/10.1016/j.lithos.2009.06.005 CrossRefGoogle Scholar
  7. Arndt NT, Guitreau M, Boullier AM, le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51:573–602.  https://doi.org/10.1093/petrology/egp080 CrossRefGoogle Scholar
  8. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, slave craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208:61–88.  https://doi.org/10.1016/j.chemgeo.2004.04.006 CrossRefGoogle Scholar
  9. Becker M, le Roex AP (2006) Geochemistry of South African on- and off-craton, group i and group ii kimberlites: petrogenesis and source region evolution. J Petrol 47:673–703.  https://doi.org/10.1093/petrology/egi089 CrossRefGoogle Scholar
  10. Bragagni A, Luguet A, Fonseca ROC, Pearson DG, Lorand JP, Nowell GM, Kjarsgaard BA (2017) The geological record of base metal sulfides in the cratonic mantle: a microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae craton (Canada). Geochim Cosmochim Acta 216:264–285.  https://doi.org/10.1016/j.gca.2017.04.015 CrossRefGoogle Scholar
  11. Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112S: 201–212.  https://doi.org/10.1016/j.lithos.2009.04.030 CrossRefGoogle Scholar
  12. Brett RC, Russell J, Andrews G, Jones T (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sci Lett 424:119–131.  https://doi.org/10.1016/j.epsl.2015.05.024 CrossRefGoogle Scholar
  13. Brooker R, Sparks R, Kavanagh J, Field M (2011) The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. Bull Volcanol 73:959–981.  https://doi.org/10.1007/s00445-011-0523-7 CrossRefGoogle Scholar
  14. Bulanova GP, Shestakova OE, Leskova NV (1980) Djerfisherite in diamond-hosted sulfide inclusions. Dokl Acad Sci USSR 255:430–433Google Scholar
  15. Bulanova GP, Spetsius ZV, Leskova NV (1990) Sulphides in diamonds and xenoliths from Yakutian kimberlite pipes. Nauka, Novosibirsk, 120 pp (In Russian)Google Scholar
  16. Buse B, Schumacher J, Sparks R, Field M (2010) Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: insights into hydrothermal metamorphism in kimberlite pipes. Contrib Mineral Petrol 160:533–550.  https://doi.org/10.1007/s00410-010-0492-4 CrossRefGoogle Scholar
  17. Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220-223:238–252.  https://doi.org/10.1016/j.lithos.2015.02.016 CrossRefGoogle Scholar
  18. Chakhmouradian AR, Mitchell RH (2001) Three compositional varieties of perovskite from kimberlites of the Lac de Gras field. Mineral Mag 65:133–148CrossRefGoogle Scholar
  19. Clarke DB (1979) Synthesis of nickeloan djerfisherite and the origin of potassic sulphides at the Frank Smith mine. ln: The mantle sample: inclusions in kimberlites and other volcanics. Proc Second Int Kimberlite Conf 2 pp 300–307Google Scholar
  20. Clarke DB, Pe GG, Mackay RM, Gill KR, O’Hara MJ, Gard JA (1977) A new potassium-iron nickel sulphide from a nodule in kimberlite. Earth Planet Sci Lett 35:421–428CrossRefGoogle Scholar
  21. Clarke DB, Mitchell RH, Chapman CAT, MacKay RM (1994) Occurrence and origin of djerfisherite from the Elwin Bay kimberlite, Somerset Island, Northwest Territories. Can Mineral 32:815–823Google Scholar
  22. Clay PL, O’Driscoll B, Upton BGJ, Busemann H (2014) Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites. Am Miner 99:1683–1693.  https://doi.org/10.2138/am.2014.4700 CrossRefGoogle Scholar
  23. Creaser RA, Grütter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the paleocene and eocene. Lithos 76(1–4):399–414.  https://doi.org/10.1016/j.lithos.2004.03.039 CrossRefGoogle Scholar
  24. Czamanske GK, Erd RC, Leonard BF, Clark JR (1981) Bartonite, a new potassium iron sulfide mineral. Am Miner 66:369–375Google Scholar
  25. d’Eyrames E, Thomassot E, Kitayama Y, Golovin A, Korsakov A, Ionov D (2017) A mantle origin for sulfates in the unusual “salty” Udachnaya-East kimberlite from sulfur abundances, speciation and their relationship with groundmass carbonates. Bull Geol Soc Fr 187:67–74.  https://doi.org/10.1051/bsgf/2017007 CrossRefGoogle Scholar
  26. Dawson JB, Smith JV (1977) The MARID (mica-amphibole-rutile-ilmenitediopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–333.  https://doi.org/10.1016/0016-7037(77)90239-3 CrossRefGoogle Scholar
  27. Distler VV, Ilupin IP, Laputina IP (1987) Sulfides of deep-seated origin in kimberlites and some aspects of copper-nickel mineralization. Int Geol Rev 29(4):456–464.  https://doi.org/10.1080/00206818709466163 CrossRefGoogle Scholar
  28. Dobrovol’skaya MG, Tsepin AI, Ilupin IP, Ponomarenko AI (1975) Djerfisherite from Yakutia kimberlites. In: Tatarinov PM (ed) Minerals and parageneses of endogenic deposits (in Russian). Nauka, Leningrad, pp 3–11Google Scholar
  29. Dobrovolskaya M, Nekrasov IY (1992) Phase relations in systems containing alkali metals (in Russian). Dokl Earth Sci 322:373–377Google Scholar
  30. Egorov KN, Kornilova VP, Safronov AF, Filippov ND (1986) Micaceous kimberlite from the Udachnaya-East pipe. Dokl Acad Sci USSR 291:199–202 (In Russian)Google Scholar
  31. Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the kimberley pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic Press, London, pp 221–311Google Scholar
  32. Fuchs LH (1966) Djerfisherite, alkali copper–iron sulfide: a new mineral from enstatite chondrites. Science 153:166–167CrossRefGoogle Scholar
  33. Giuliani A, Kamenetsky VS, Phillips D, Kendrick MA, Wyatt BA, Goemann K (2012) Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology 40:967–970.  https://doi.org/10.1130/g33221.1 CrossRefGoogle Scholar
  34. Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Goemann K (2013) Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S–Cl-rich C–O–H fluids. Contrib Mineral Petrol 165:155–171.  https://doi.org/10.1007/s00410-012-0801-1 CrossRefGoogle Scholar
  35. Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014a) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374–375:61–83.  https://doi.org/10.1016/j.chemgeo.2014.03.003 CrossRefGoogle Scholar
  36. Giuliani A, Phillips D, Maas R, Woodhead JD, Kendrick MA, Greig A, Armstrong RA, Chew D, Kamenetsky VS, Fiorentini ML (2014b) LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the kimberley region, South Africa. Earth Planet Sci Lett 401:132–147.  https://doi.org/10.1016/j.epsl.2014.05.044 CrossRefGoogle Scholar
  37. Giuliani A, Phillips D, Kamenetsky VS, Kendrick MA, Wyatt BA, Goemann K, Hutchinson G (2014c) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858.  https://doi.org/10.1093/petrology/egu008 CrossRefGoogle Scholar
  38. Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale R, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356.  https://doi.org/10.1016/j.chemgeo.2016.10.011 CrossRefGoogle Scholar
  39. Giuliani A, Woodhead JD, Phillips D, Maas R, Davies GR, Griffin WL (2018) Titanates of the lindsleyite–mathiasite (LIMA) group reveal isotope disequilibrium associated with metasomatism in the mantle beneath Kimberley (South Africa). Earth Planet Sci Lett 482:253–264.  https://doi.org/10.1016/j.epsl.2017.11.014 CrossRefGoogle Scholar
  40. Golovin AV (2004) Melt evolution features during crystallisation of kimberlites (Udachnaya-East pipe, Yakutia) and basanites (Bele pipe, Khakasia) based on study of melt inclusions. PhD dissertation, UIGGM SD RAS, Novosibirsk, pp 240 (In Russian) Google Scholar
  41. Golovin AV, Sharygin VV, Pokhilenko NP, Malkovets VG, Kolesov BA, Sobolev NV (2003) Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East Pipe, Yakutia. Dokl Earth Sci 388:93–96Google Scholar
  42. Golovin AV, Sharygin VV, Pokhilenko NP (2007) Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallisation stages. Petrology 15(2):168–183.  https://doi.org/10.1134/s086959110702004x CrossRefGoogle Scholar
  43. Golovin AV, Goryainov SV, Kokh SN, Sharygin IS, Rashchenko SV, Kokh KA, Sokol EV, Devyatiyarova AS (2017a) The application of Raman spectroscopy to djerfisherite identification. J Raman Spectrosc 48:1574–1582.  https://doi.org/10.1002/jrs.5143 CrossRefGoogle Scholar
  44. Golovin AV, Sharygin IS, Korsakov AV (2017b) Origin of alkaline carbonates in kimberlites of the Siberian craton: evidence from melt inclusions in mantle olivine of the Udachnaya-East kimberlite. Chem Geol 455:357–375.  https://doi.org/10.1016/j.chemgeo.2016.10.036 CrossRefGoogle Scholar
  45. Golovin AV, Sharygin IS, Kamenetsky VS, Korsakov AV, Yaxley GM (2018) Alkali-carbonate melts from the base of cratonic lithosphericc mantle: links to kimberlites. Chem Geol 483:261–274.  https://doi.org/10.1016/j.chemgeo.2018.02.016 CrossRefGoogle Scholar
  46. Gorbachev NS, Nekrasov IY (1980) Genesis of synthetic and natural potassium sulfides. Dokl Acad Sci USSR. Earth Sci Sect 251:126–129.Google Scholar
  47. Govorov I, Blagodareva N, Kiryukhina N, Khar’kiv A, Shcheglov A (1984) Primary potassium minerals in deep-seated eclogites of Yakutia. Int Geol Rev 26:1290–1294.  https://doi.org/10.1080/00206818409466649 CrossRefGoogle Scholar
  48. Gurney JJ, Harte B (1980) Chemical variations in upper mantle nodules from Southern African kimberlites. Phil Trans R Soc Lond Ser A 297:273–293.  https://doi.org/10.1098/rsta.1980.0215 CrossRefGoogle Scholar
  49. Henderson CMB, Kogarko LN, Plant DA (1999) Extreme closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Mineral Mag 63:433–438.  https://doi.org/10.1180/002646199548529 CrossRefGoogle Scholar
  50. Hunt L, Stachel T, McCandless TE, Armstrong J, Muelenbachs K (2012) Diamonds and their mineral inclusions from the Renard kimberlites in Quebec. Lithos 142–143:267–284.  https://doi.org/10.1016/j.lithos.2012.02.022 CrossRefGoogle Scholar
  51. Hunter RH, Taylor LA (1982) Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10:617–620.  https://doi.org/10.1130/0091-7613(1982)10%3C617:IOGFTM%3E2.0.CO;2 CrossRefGoogle Scholar
  52. Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332.  https://doi.org/10.1016/S0012-821X(01)00291-6 CrossRefGoogle Scholar
  53. Kamenetsky VS, Yaxley GM (2015) Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta 158:48–56.  https://doi.org/10.1016/j.gca.2015.03.004 CrossRefGoogle Scholar
  54. Kamenetsky VS, Kamenetsky MB, Sharygin VV, Golovin AV (2007) Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas? Geophys Res Lett 34:L09316.  https://doi.org/10.1029/2007GL029389 CrossRefGoogle Scholar
  55. Kamenetsky VS, Kamenetsky MB, Sobolev AV, Golovin AV, Demouchy S, Faure K, Sharygin VV, Kuzmin DV (2008) Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839.  https://doi.org/10.1093/petrology/egm033 CrossRefGoogle Scholar
  56. Kamenetsky VS, Kamenetsky MB, Weiss Y, Navon O, Nielsen TFD, Mernagh TP (2009a) How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos 112S:334–346.  https://doi.org/10.1016/j.lithos.2009.03.032 CrossRefGoogle Scholar
  57. Kamenetsky VS, Maas R, Kamenetsky MB, Paton C, Phillips D, Golovin AV, Gornova MA (2009b) Chlorine from the mantle: magmatic halides in the Udachnaya-East Kimberlite, Siberia. Earth Planet Sci Lett 285:96–104.  https://doi.org/10.1016/j.epsl.2009.06.001 CrossRefGoogle Scholar
  58. Kamenetsky VS, Kamenetsky M, Sobolev AV, Golovin AV, Sharygin VV, Pokhilenko NP, Sobolev NV (2009c) Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112S:213–222.  https://doi.org/10.1016/j.lithos.2009.03.040 CrossRefGoogle Scholar
  59. Kamenetsky VS, Kamenetsky MB, Golovin AV, Sharygin VV, Maas R (2012) Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186.  https://doi.org/10.1016/j.lithos.2012.04.032 CrossRefGoogle Scholar
  60. Kamenetsky VS, Grutter H, Kamenetsky MB, Goemann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111.  https://doi.org/10.1016/j.chemgeo.2012.09.022 CrossRefGoogle Scholar
  61. Kamenetsky VS, Golovin AV, Maas R, Giuliani A, Kamenetsky MB, Weiss Y (2014) Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth Sci Rev 139:145–167.  https://doi.org/10.1016/j.earscirev.2014.09.004 CrossRefGoogle Scholar
  62. Kinny PD, Griffin BJ, Heaman LM, Brakhfogel FF, Spetsius ZV (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geologiya i geofizika 38:91–99Google Scholar
  63. Kitayama Y, Thomassot E, Galy Α, Golovin A, Korsakov A, d’Eyrames E, Assayag N, Bouden N, Ionov D (2017) Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): a record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem Geol 455:315–330.  https://doi.org/10.1016/j.chemgeo.2016.10.037 CrossRefGoogle Scholar
  64. Kjarsgaard BA, Pearson DG, Tappe S, Nowell GM, Dowall DP (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112S:236–248.  https://doi.org/10.1016/j.lithos.2009.06.001 CrossRefGoogle Scholar
  65. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744.  https://doi.org/10.1016/j.gca.2006.10.008 CrossRefGoogle Scholar
  66. Kopylova MG, Kostrovitsky SI, Egorov KN (2013) Salts in southern Yakutian kimberlites and the problem of primary alkali kimberlite melts. Earth Sci Rev 119(0):1–16.  https://doi.org/10.1016/j.earscirev.2013.01.007 CrossRefGoogle Scholar
  67. Kostrovitskiy SI, Kopylova MG, Egorov KN, Yakovlev DA (2013) The exceptionally fresh Udachnaya-East Kimberlite: evidence for brine and evaporite contamination. In: Pearson DG et al (eds), Proceedings of the 10th international kimberlite conference pp 75–91Google Scholar
  68. Lawless PJ, Gurney JJ, Dawson JB (1979) Polymict peridotites from the bultfontein and de beers mines, Kimberly, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample. 2nd international kimberlite conference. American Geophysical Union pp 145–155.  https://doi.org/10.1029/SP016p0145
  69. le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group i kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286.  https://doi.org/10.1093/petrology/egg077 CrossRefGoogle Scholar
  70. Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Mineral 20:317–331.  https://doi.org/10.1127/0935-1221/2008/0020-1815 CrossRefGoogle Scholar
  71. Logvinova AM, Taylor LA, Fedorova E, Yelisseyev A, Wirth R, Howarth G, Reutsky VN, Sobolev NV (2015) A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe, Yakutia: role of subduction in diamond formation. Russ Geol Geophys 56:306–320.  https://doi.org/10.1016//j.rgg.201 CrossRefGoogle Scholar
  72. Lorand JP, Grégoire M (2006) Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South Africa). Contrib Mineral Petrol 151:521–538.  https://doi.org/10.1007/s00410-006-0074-7 CrossRefGoogle Scholar
  73. Mernagh TP, Kamenetsky VS, Kamenetsky MB (2011) A Raman microprobe study of melt inclusions in kimberlites from Siberia, Canada, SW Greenland and South Africa. Spectrochim Acta Part A Mol Biomol Spectrosc 80:82–87.  https://doi.org/10.1016/j.saa.2011.01.034 CrossRefGoogle Scholar
  74. Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Mineral Petrol 146:696–714.  https://doi.org/10.1007/s00410-003-0529-z CrossRefGoogle Scholar
  75. Navon O, Hutcheon ID, Rossman GR, Wasserburg GJ (1988) Mantle-derived fluids in diamond micro-inclusion. Nature 335:784–789.  https://doi.org/10.1038/335784a0 CrossRefGoogle Scholar
  76. O’Brien HE, Tyni M (1999) Mineralogy and geochemistry of kimberlites and related rocks from Finland. In: Proceedings of the 7th international kimberlite conference, Geological Survey of Finland pp 626–636Google Scholar
  77. Osadchii VO, Voronin MV, Baranov AV (2018) Phase equilibria in the KFeS2–Fe–S system at 300–600 °C and bartonite stability. Contrib Mineral Petrol  https://doi.org/10.1007/s00410-018-1464-3 CrossRefGoogle Scholar
  78. Pasteris JD (1982) Evidence of potassium metasomatism in mantle xenoliths: EOS Transactions (abstract). Am Geophys Union 63:462Google Scholar
  79. Pokhilenko NP (2009) Polymict breccia xenoliths: evidence for the complex character of kimberlite formation. Lithos 112:934–941.  https://doi.org/10.1016/j.lithos.2009.06.019 CrossRefGoogle Scholar
  80. Porritt LA, Cas RAF (2011) The influence of complex intra- and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes. Bull Volcanol 73:717–735.  https://doi.org/10.1007/s00445-011-0452-5 CrossRefGoogle Scholar
  81. Price SE, Russell JK, Kopylova MG (2000) Primitive magma from the Jericho pipe, N.W.T, Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808.  https://doi.org/10.1093/petrology/41.6.789 CrossRefGoogle Scholar
  82. Reid AM, Donaldson CH, Brown RW, Ridley WI, Dawson JB (1975) Mineral chemistry of peridotite xenoliths from the Lashaine volcano, Tanzania. Phys Chem Earth 9:525–543.  https://doi.org/10.1016/0079-1946(75)90037-3 CrossRefGoogle Scholar
  83. Roedder E (1984) Fluid inclusions: reviews in mineralogy, vol 12. Mineralogical Society of America, Book Crafters Inc., Michigan, p 644CrossRefGoogle Scholar
  84. Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356.  https://doi.org/10.1038/nature10740 CrossRefGoogle Scholar
  85. Sarkar C, Heaman LM, Pearson DG (2015) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218–219:155–166.  https://doi.org/10.1016/j.lithos.2015.01.017 CrossRefGoogle Scholar
  86. Sharygin VV, Golovin AV, Pokhilenko NP, Sobolev NV (2003) Djerfisherite in unaltered kimberlites of the Udachnaya-East pipe, Yakutia. Dokl Earth Sci 390:554–557Google Scholar
  87. Sharygin VV, Golovin AV, Pokhilenko NP, Kamenetsky VS (2007) Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): paragenesis, composition and origin. Eur J Mineral 19:51–63.  https://doi.org/10.1127/0935-1221/2007/0019-0051 CrossRefGoogle Scholar
  88. Sharygin VV, Kamenetsky VS, Kamenetsky MB (2008) Potassium sulfides in kimberlite-hosted chloride-’nyerereite’ and chloride clasts of the Udachnaya-East pipe, Yakutia, Russia. Can Mineral 46:1079–1095.  https://doi.org/10.3749/canmin.46.4.1079 CrossRefGoogle Scholar
  89. Sharygin IS, Golovin AV, Pokhilenko NP (2011) Djerfisherite in Kimberlites of the Kuoikskoe field as an indicator of enrichment of Kimberlite melts in chlorine. Dokl Earth Sci 436:301–307.  https://doi.org/10.1134/s1028334x11020255 CrossRefGoogle Scholar
  90. Sharygin IS, Golovin AV, Pokhilenko NP (2012) Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): origin and relationship with kimberlitic magmatism. Russ Geol Geophys 53:247–261.  https://doi.org/10.1016/j.rgg.2012.02.003 CrossRefGoogle Scholar
  91. Sharygin IS, Litasov KD, Shatskiy A, Golovin AV, Ohtani E, Pokhilenko NP (2015) Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Res 28:1391–1414.  https://doi.org/10.1016/j.gr.2014.10.005 CrossRefGoogle Scholar
  92. Sharygin IS, Litasov KD, Sharygin VV, Shatskiy A, Ohtani E (2016) Genesis of djerfisherite in kimberlite-hosted mantle xenoliths. In: Goldschmidt conference 2016 (Abstract: 2812) Google Scholar
  93. Sharygin IS, Litasov KD, Shatskiy A, Safonov OG, Golovin AV, Ohtani E, Pokhilenko NP (2017b) Experimental constraints on orthopyroxene dissolution in alkali carbonate melts in the lithospheric mantle: implications for kimberlite melt composition and magma ascent. Chem Geol 455:44–56.  https://doi.org/10.1016/j.chemgeo.2016.09.030 CrossRefGoogle Scholar
  94. Smith CB, Allsopp HL, Kramers JD, Hutchinson G, Roddick JC (1985) Emplacement ages of Jurassic-Cretaceous South African kimberlites by the Rb–Sr method on phlogopite and whole-rock samples. Trans Geol Soc S Afr 88:249–266Google Scholar
  95. Smith CB, Sims K, Chimuka L, Duffin A, Beard AD, Townend R (2004) Kimberlite metasomatism at Murowa and Sese pipes. Zimb Lithos 76:219–232.  https://doi.org/10.1016/j.lithos.2004.03.009 CrossRefGoogle Scholar
  96. Sobolev VN, Taylor LA, Snyder GA, Jerde EA, Neal CR, Sobolev NV (2010) Quantifying the effects of metasomatism in mantle xenoliths: constraints from secondary chemistry and mineralogy in Udachnaya Eclogites, Yakutia. Int Geol Rev 41:391–416.  https://doi.org/10.1080/00206819909465149 CrossRefGoogle Scholar
  97. Solovieva LV, Egorov KN, Markova ME, Kharkiv AD, Popolitov KE, Barankevich VG (1997) Mantle metasomatism and melting in deep-seated xenoliths from the Udachnaya pipe, their possible relationship with diamond and kimberlite formation. Russ Geol Geophys 38:182–204Google Scholar
  98. Soltys A, Giuliani A, Phillips D, Kamenetsky VS, Maas R, Woodhead J, Rodemann T (2016) In-situ assimilation of mantle minerals by kimberlitic magmas—direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256–257:182–196.  https://doi.org/10.1016/j.lithos.2016.04.011 CrossRefGoogle Scholar
  99. Soltys A, Giuliani A, Phillips D (2018) A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304–307:1–15.  https://doi.org/10.1016/j.lithos.2018.01.027 CrossRefGoogle Scholar
  100. Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48.  https://doi.org/10.1016/j.jvolgeores.2006.02.010 CrossRefGoogle Scholar
  101. Sparks RSJ, Brooker RA, Field M, Kavanagh J, Schumacher JC, Walter MJ, White J (2009) The nature of erupting kimberlite melts. Lithos 112S:429–438.  https://doi.org/10.1016/j.lithos.2009.05.032 CrossRefGoogle Scholar
  102. Spetsius ZV, Bulanova GP, Leskova NV (1987) Djerfisherite and its genesis in kimberlitic rocks. Dokl Acad Sci USSR 293:199–202Google Scholar
  103. Stamm N, Schmidt MW (2017) Asthenospheric kimberlites: volatile contents and bulk compositions at 7 GPa. Earth Planet Sci Lett 474:309–321.  https://doi.org/10.1016/j.epsl.2017.06.037 CrossRefGoogle Scholar
  104. Stripp GR, Field M, Schumacher JC, Sparks RSJ, Cressey G (2006) Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J Metamorph Geol 24:515–534.  https://doi.org/10.1111/j.1525-1314.2006.00652.x CrossRefGoogle Scholar
  105. Sun J, Liu C-Z, Tappe S, Kostrovitsky SI, Wu F-Y, Yakovlev D, Yang Y-H, Yang J-H (2014) Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U–Pb and Sr–Nd perovskite isotope analysis. Earth Planet Sci Lett 404:283–295.  https://doi.org/10.1016/j.epsl.2014.07.039 CrossRefGoogle Scholar
  106. Tappe S, Brand NB, Stracke A, van Acken D, Liu C-Z, Strauss H, Wu F-Y, Luguet A, Mitchell RH (2016) Plates or plumes in the origin of kimberlites: U/Pb perovskite and Sr–Nd–Hf–Os–C–O isotope constraints from the Superior craton (Canada). Chem Geol 45:57–83.  https://doi.org/10.1016/j.chemgeo.2016.08.019 CrossRefGoogle Scholar
  107. Yakovenchuk VN, Pakhomovsky YA, Men’shikov YP, Ivanyuk GY, Krivovichev SV, Burns PC (2003) Chlorbartonite, K6Fe24S26(Cl,S), a new mineral species from a hydrothermal vein in the Khibina massif, Kola Peninsula, Russia: description and crystal structure. Can Mineral 41:503–511CrossRefGoogle Scholar
  108. Zaccarini F, Thalhammer OAR, Princivalle F, Lenaz D, Stanley CJ, Garuti G (2007) Djerfisherite in the guli dunite complex, polar siberia: a primary or metasomatic phase? Can Mineral 45:1201–1211.  https://doi.org/10.2113/gscanmin.45.5.120 CrossRefGoogle Scholar
  109. Zedgenizov DA, Rege S, Griffin WL, Kagi H, Shatsky VS (2007) Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem Geol 240:151–162.  https://doi.org/10.1016/j.chemgeo.2007.02.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Adam Abersteiner
    • 1
    Email author
  • Vadim S. Kamenetsky
    • 1
  • Karsten Goemann
    • 2
  • Alexander V. Golovin
    • 3
    • 4
  • Igor S. Sharygin
    • 3
  • Andrea Giuliani
    • 5
    • 6
  • Thomas Rodemann
    • 2
  • Zdislav V. Spetsius
    • 7
  • Maya Kamenetsky
    • 1
  1. 1.School of Physical SciencesUniversity of TasmaniaHobartAustralia
  2. 2.Central Science LaboratoryUniversity of TasmaniaHobartAustralia
  3. 3.Sоbоlеv Institute of Geology and MineralogySiberian Вrаnсh Russian Academy of SciencesNovosibirskRussian Federation
  4. 4.Novosibirsk State UniversityNovosibirskRussian Federation
  5. 5.KiDs (Kimberlites and Diamonds), School of Earth SciencesThe University of MelbourneParkvilleAustralia
  6. 6.ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia
  7. 7.Geo-Scientific Investigation EnterpriseALROSA PJSCMirnyRussia

Personalised recommendations