Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt

  • D. A. ZedgenizovEmail author
  • A. L. Ragozin
  • V. S. Shatsky
  • W. L. Griffin
Original Paper


A xenolith of bimineralic eclogite from the Udachnaya kimberlite pipe provides a snapshot of interaction between mantle rocks and diamond-forming fluids/melts. The major-element composition of the eclogite is similar to that of N-MORB and/or oceanic gabbros, but its trace-element pattern shows the effects of mantle metasomatism, which resulted in diamond formation. The diamonds are clustered in alteration veins that crosscut primary garnet and clinopyroxene. The diamonds contain microinclusions of a fluid/melt dominated by carbonate and KCl. Compared to the worldwide dataset, the microinclusions in these diamonds fall in middle of the range between saline fluids and low-Mg carbonatitic melts. The fluid/melt acted as a metasomatic agent that percolated through ancient eclogitic rocks stored in the mantle. This interaction is consistent with calculated partition coefficients between the rock-forming minerals and diamond-forming fluid/melt, which are similar to experimentally-determined values. Some differences between the calculated and experimental values may be due to the low contents of water and silicates in the chloride-carbonate melt observed in this study, and in particular its high contents of K and LILE. The lack of nitrogen aggregation in the diamonds implies that the diamond-forming metasomatism took place shortly before the eruption of the kimberlite, and that the microinclusions thus represent saline carbonate-rich fluids circulating in the basement of lithospheric mantle (150–170 km depth).


Diamond Eclogite Mantle Fluid/melt Metasomatism Interaction 



We thank Frank Poitrasson and two anonymous reviewers for their helpful comments and suggestions. This work was supported by state assignment project (project No. 0330-2016-0007). The analytical data on trace elements were obtained using instrumentation funded by DEST Systemic Infrastructure Grants, ARC LIEF, NCRIS/AuScope, industry partners and Macquarie University. This is contribution 1202 from the ARC Centre of Excellence for Core to Crust Fluid Systems ( and 1252 in the GEMOC Key Centre (


  1. Agashev AM (2002) Rb-Sr and Sm-Nd isotope systematics and geochemistry of Siberian kimberlites and garnet-pyroxenite xenoliths: an insight into lithospheric mantle evolution and kimberlite origin. PhD thesis. PhD thesis. Hokkaido UniversityGoogle Scholar
  2. Agashev AM, Ionov DA, Pokhilenko NP, Golovin AV, Cherepanova Y, Sharygin IS (2013) Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161:201–215. CrossRefGoogle Scholar
  3. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJ (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65(19):3267–3287CrossRefGoogle Scholar
  4. Benoit M, Polvé M, Ceuleneer G (1996) Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem Geol 134(1–3):199–214CrossRefGoogle Scholar
  5. Bennett SL, Blundy J, Elliott T (2004) The effect of sodium and titanium on crystalmelt partitioning of trace elements. Geochim Cosmochim Acta 68(10):2335–2347CrossRefGoogle Scholar
  6. Boyd FR, Finnerty AA (1980) Conditions of origin of natural diamonds of peridotite affinity. J Geophys Res: Solid Earth 85(B12):6911–6918. CrossRefGoogle Scholar
  7. Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn M, Seal M (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett 86(2–4):341–353CrossRefGoogle Scholar
  8. Cartigny P, Palot M, Thomassot E, Harris JW (2014) Diamond formation: a stable isotope perspective. Ann Rev Earth Planet Sci 42:699–732CrossRefGoogle Scholar
  9. Coleman R, Lee D, Beatty L, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76(5):483–508CrossRefGoogle Scholar
  10. Davis GL, Sobolev NV, Khar’Kiv AD (1980) New data on the age of Yakutian kimberlites obtained by uranium-lead method on zircons. Dokl Akad Nauk SSSR 254(1):175–179Google Scholar
  11. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Miner Petrol 71(1):13–22. CrossRefGoogle Scholar
  12. Gréau Y, Huang J-X, Griffin WL, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim Cosmochim Acta 75(22):6927–6954CrossRefGoogle Scholar
  13. Griffin WL, Ryan CG (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. J Geochem Explor 53:311–337CrossRefGoogle Scholar
  14. Griffin WL, Smith D, Ryan CG, Oreilly SY, Win TT (1996) Trace-element zoning in mantle minerals: Metasomatism and thermal events in the upper mantle. Can Miner 34:1179–1193Google Scholar
  15. Hammouda T, Moine BN, Devidal JL, Vincent C (2009) Trace element partitioning during partial melting of carbonated eclogites. Phys Earth Planet Inter 174(1–4):60–69. CrossRefGoogle Scholar
  16. Harris JW (1992) Diamond geology. In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, pp 345–393Google Scholar
  17. Harte B, Kirkley MB (1997) Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem Geol 136(1–2):1–24CrossRefGoogle Scholar
  18. Harte B, Fitzsimons ICW, Harris JW, Otter ML (1999) Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S-Africa. Miner Mag 63(6):829–829. CrossRefGoogle Scholar
  19. Helmstaedt H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau—samples of subducted Franciscan-type oceanic lithosphere. In: Physics and Chemistry of the Earth, Elsevier, pp 95–111CrossRefGoogle Scholar
  20. Huang J-X, Griffin WL, Gréau Y, Pearson NJ, O'Reilly SY, Cliff J, Martin L (2013) Unmasking xenolithic eclogites: progressive metasomatism of a key Roberts Victor sample. Chem Geol 364:56–65CrossRefGoogle Scholar
  21. Ickert RB, Stachel T, Stern RA, Harris JW (2013) Diamond from recycled crustal carbon documented by coupled δ18O–δ13C measurements of diamonds and theirinclusions. Earth Planet Sci Lett 364:85–97. CrossRefGoogle Scholar
  22. Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187(3–4):323–332CrossRefGoogle Scholar
  23. Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim Cosmochim Acta 68:2561–2575CrossRefGoogle Scholar
  24. Jacob D (2004a) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316CrossRefGoogle Scholar
  25. Jacob DE (2004b) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1):295–316. CrossRefGoogle Scholar
  26. Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48(1):317–336CrossRefGoogle Scholar
  27. Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58: 5191–5207CrossRefGoogle Scholar
  28. Jagoutz E, Dawson J, Hoernes S, Spettel B, Wanke H (1984) Anorthosititc Oceanic Crust in the Archean Earth. In: Lunar and Planetary Science Conference, vol 15. pp 395–396Google Scholar
  29. Jambon A, Deruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126(2):101–117CrossRefGoogle Scholar
  30. Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Miner Petrol 114(2):189–202CrossRefGoogle Scholar
  31. Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32(10):845–848. CrossRefGoogle Scholar
  32. Kamenetsky VS, Kamenetsky MB, Sharygin VV, Golovin AV (2007) Carbonate-chloride enrichment in fresh kimberlites of the Udachnaya-East pipe, Siberia: a clue to physical properties of kimberlite magmas? Geophys Res Lett 34(9):L09316. CrossRefGoogle Scholar
  33. Kinny PD, Griffin WL, Heaman LM, Brakhfogel FF, Spetsius ZV (1997) SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Russ Geol Geophys 38:97–105Google Scholar
  34. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution—a tale of one diamond. Lithos 77(1–4):243–253. CrossRefGoogle Scholar
  35. Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: A close look at diamond-growing fluids. Am Miner 91(2–3):353–365. CrossRefGoogle Scholar
  36. Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Et Cosmochim Acta 71(3):723–744. CrossRefGoogle Scholar
  37. Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds-a new type of diamond-forming fluid. Lithos 112:648–659. CrossRefGoogle Scholar
  38. Lavrent’ev YG, Karmanov NS, Usova LV (2015) Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ Geol Geophys 56(8):1154–1161CrossRefGoogle Scholar
  39. Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Miner 20(3):317–331. CrossRefGoogle Scholar
  40. Logvinova AM, Wirth R, Tomilenko AA, Afanas’ev VP, Sobolev NV (2011) The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russ Geol Geophys 52:1286–1297CrossRefGoogle Scholar
  41. McCandless TE, Gurney JJ (1989) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In: Ross JR et al (eds) Kimberlites and related rocks. Their crustal/mantle setting, diamonds and diamond exploration, vol 2. Geological Society of Australia Special Publication. Blackwell, pp 827–832Google Scholar
  42. MacGregor ID, Carter JL (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor Mine, South Africa. Phys Earth Planet Inter 3:391–397CrossRefGoogle Scholar
  43. MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res: Solid Earth 91(B14):14063–14079CrossRefGoogle Scholar
  44. Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128(3–4):231–241CrossRefGoogle Scholar
  45. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253CrossRefGoogle Scholar
  46. Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 501–522Google Scholar
  47. Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Miner Petrol 146(6):696–714CrossRefGoogle Scholar
  48. Navon O, Hutcheon I, Rossman G, Wasserburg G (1988) Mantle-derived fluids in diamond micro-inclusions. Nature 335:784–789CrossRefGoogle Scholar
  49. Navon O, Klein-BenDavid O, Logvinova AM, Sobolev NV, Schrauder M, Kaminsky FV, Spetius ZV (2008) Yakutian diamond-forming fluids and the evolution of carbonatitic high-density fluids. In: 9th IKC, Extended Abstracts 9IKC-A-00113Google Scholar
  50. O’Reilly SY, Griffin WL (2013) Mantle metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Heidelberg, pp 471–533CrossRefGoogle Scholar
  51. Palyanov YN, Sokol AG (2009) The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 112:690–700. CrossRefGoogle Scholar
  52. Palyanov YN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. PNAS 104(22):9122–9127. CrossRefGoogle Scholar
  53. Pearson D, Snyder G, Shirey S, Taylor L, Carlson R, Sobolev N (1995) Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374(6524):711–713CrossRefGoogle Scholar
  54. Perchuk LL, Safonov OG, Yapaskurt VO, Barton JM Jr (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos 60(3–4):89–111CrossRefGoogle Scholar
  55. Rege S, Jackson S, Griffin WL, Davies RM, Pearson NJ, O’Reilly SY (2005) Quantitative trace-element analysis of diamond by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:601–611CrossRefGoogle Scholar
  56. Reutsky VN, Zedgenizov DA (2007) Some specific features of genesis of microdiamonds of octahedral and cubic habit from kimberlites of the Udachnaya pipe (Yakutia) inferred from carbon isotopes and main impurity defects. Russ Geol Geophys 48(3):299–304CrossRefGoogle Scholar
  57. Ringwood AE, Green DH (1966) Petrological nature of the stable continental crust. In: Steinhart JS, Smith TJ (eds) The earth beneath the continents (revised ed). American Geophysical Monograph Series, vol 10, pp 611–619CrossRefGoogle Scholar
  58. Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145(3–4):395–411. CrossRefGoogle Scholar
  59. Safonov OG, Perchuk LL, Litvin YA (2007) Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle. Earth Planet Sci Lett 253(1–2):112–128. CrossRefGoogle Scholar
  60. Safonov OG, Chertkova NV, Perchuk LL, Litvin YA (2009) Experimental model for alkalic chloride-rich liquids in the upper mantle. Lithos 112(S1):260–273. CrossRefGoogle Scholar
  61. Safonov OG, Kamenetsky VS, Perchuk LL (2011) Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems: experiments and application to natural assemblages. J Petrol 52(7–8):1307–1331. CrossRefGoogle Scholar
  62. Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng. Botsw Geochim et Cosmochim Acta 58(2):761–771CrossRefGoogle Scholar
  63. Shatsky VS, Zedgenizov DA, Ragozin AL (2016) Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton. Russ Geol Geophys 57(1):111–126. CrossRefGoogle Scholar
  64. Shilobreeva S, Martinez I, Busigny V, Agrinier P, Laverne C (2011) Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim Cosmochim Acta 75(9):2237–2255CrossRefGoogle Scholar
  65. Shiryaev AA, Izraeli ES, Hauri EH, Zakharchenko OD, Navon O (2005) Chemical, optical and isotopic investigation of fibrous diamonds from Brazil. Russ Geol Geophys 46(12):1185–1201Google Scholar
  66. Skuzovatov SY, Zedgenizov DA, Shatsky VS, Ragozin AL, Kuper KE (2011) Composition of cloudy microinclusions in octahedral diamonds from the Internatsional’naya kimberlite pipe (Yakutia). Russ Geol Geophys 52(1):85–96. CrossRefGoogle Scholar
  67. Skuzovatov S, Zedgenizov D, Howell D, Griffin WL (2016) Various growth environments of cloudy diamonds from Malobotuobia kimberlite field (Siberian craton). Lithos 265:96–107CrossRefGoogle Scholar
  68. Smith EM, Kopylova MG, Nowell GM, Pearson DG, Ryder J (2012) Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior craton. Geology 40(12):1071–1074CrossRefGoogle Scholar
  69. Snyder GA, Jerde EA, Taylor LA, Halliday AN, Sobolev VN, Sobolev NV (1993) Nd and Sr isotopes from diamondiferous eclogites, Udachnaya kimberlite pipe, Yakutia, Siberia: evidence of differentiation in the early Earth? Earth Planet Sci Lett 118(1–4):91–100CrossRefGoogle Scholar
  70. Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayeda TK, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Miner 80:799–809CrossRefGoogle Scholar
  71. Sobolev NV (1977) Deep seated inclusions in kimberlites and the problem of the composition of the upper mantle. AGU, Washington, D.C.CrossRefGoogle Scholar
  72. Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia. Int Geol Rev 36(1):42–64CrossRefGoogle Scholar
  73. Sobolev NV, Snyder GA, Taylor LA, Keller RA, Yefimova ES, Sobolev VN, Shimizu N (1998) Extreme chemical diversity in the mantle during eclogitic diamond formation: evidence from 35 garnet and 5 pyroxene inclusions in a single diamond. Int Geol Rev 40(7):567–578CrossRefGoogle Scholar
  74. Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis. Int Geol Rev 44(11):973–987CrossRefGoogle Scholar
  75. Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1):5–32CrossRefGoogle Scholar
  76. Stachel T, Luth RW (2015) Diamond formation—where, when and how? Lithos 220:200–220CrossRefGoogle Scholar
  77. Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112:625–637CrossRefGoogle Scholar
  78. Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable contitions. J Cryst Growth 99(1):1156–1161CrossRefGoogle Scholar
  79. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian Mantle. Chemie der Erde-Geochem 64(1):1–74CrossRefGoogle Scholar
  80. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J Geol:551–567CrossRefGoogle Scholar
  81. Taylor LA, Keller RA, Snyder GA, Wang WY, Carlson WD, Hauri EH, McCandless T, Kim KR, Sobolev NV, Bezborodov SM (2000) Diamonds and their mineral inclusions, and what they tell us: a detailed “pull-apart” of a diamondiferous eclogite. Int Geol Rev 42(11):959–983CrossRefGoogle Scholar
  82. Tomlinson E, Jones A, Milledge J (2004) High-pressure experimental growth of diamond using C-K2CO3-KCl as an analogue for Cl-bearing carbonate fluid. Lithos 77:287–294CrossRefGoogle Scholar
  83. Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250(3–4):581–595. CrossRefGoogle Scholar
  84. Tomlinson EL, Muller W, The EIMF (2009) A snapshot of mantle metasomatism: trace element analysis of coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds. Earth Planet Sci Lett 279:362–372CrossRefGoogle Scholar
  85. van Achterbergh E, Griffin WL, Ryan CG, O’Reilly SY, Pearson NJ, Kivi K, Doyle BJ (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30(8):743–746CrossRefGoogle Scholar
  86. Weiss Y, Griffin WL, Elhlou S, Navon O (2008) Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds. Chem Geol 252(3–4):158–168. CrossRefGoogle Scholar
  87. Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan. Guinea Lithos 112:660–674. CrossRefGoogle Scholar
  88. Weiss Y, Griffin WL, Navon O (2013) Diamond-forming fluids in fibrous diamonds: The trace-element perspective. Earth Planet Sci Lett 376(0):110–125. CrossRefGoogle Scholar
  89. Weiss Y, Kiflawi I, Davies N, Navon O (2014) High-density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Acta 141:145–159CrossRefGoogle Scholar
  90. Weiss Y, McNeill J, Pearson DG, Nowell GM, Ottley CJ (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524(7565):339CrossRefGoogle Scholar
  91. Wendlandt RF, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: results and implications for the formation of light rare earth-enriched rocks. Contrib Miner Petrol 69(4):409–419CrossRefGoogle Scholar
  92. Zedgenizov DA, Kagi H, Shatsky VS, Sobolev NV (2004) Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy. Miner Mag 68(1):61–73. CrossRefGoogle Scholar
  93. Zedgenizov DA, Ragozin AL, Shatsky VS (2007a) Chloride-carbonate fluid in diamonds from the eclogite xenolith. Dokl Earth Sci 415(2):961–964. CrossRefGoogle Scholar
  94. Zedgenizov DA, Rege S, Griffin WL, Kagi H, Shatsky VS (2007b) Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem Geol 240(1–2):151–162. CrossRefGoogle Scholar
  95. Zedgenizov DA, Ragozin AL, Shatsky VS (2007c) Compositional features of diamond growth medium: from the study of microinclusions in natural diamonds. Proc Russ Miner Soc 7:159–172Google Scholar
  96. Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112:638–647. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. A. Zedgenizov
    • 1
    • 2
    Email author
  • A. L. Ragozin
    • 1
    • 2
  • V. S. Shatsky
    • 1
    • 2
    • 3
  • W. L. Griffin
    • 4
  1. 1.V.S. Sobolev Institute of Geology and Mineralogy SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.A.P. Vinogradov Institute of Geochemistry, SB RASIrkutskRussia
  4. 4.Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOCSydneyAustralia

Personalised recommendations