Constraining magma sources using primitive olivine-hosted melt inclusions from Puñalica and Sangay volcanoes (Ecuador)

  • Diego F. NarvaezEmail author
  • Estelle F. Rose-Koga
  • Pablo Samaniego
  • Kenneth T. Koga
  • Silvana Hidalgo
Original Paper


Constraining arc magma sources at continental arc settings is a delicate task, because chemical signatures from crustal processes obscure the slab and mantle signatures. Here, we present major, trace, and volatile element compositions of olivine-hosted melt inclusions (Fo82–89) selected from the most primitive lavas (Mg# > 60) from two Ecuadorian volcanoes (Puñalica and Sangay) situated at the southern termination of the Andean Northern Volcanic Zone. Melt inclusions (MI) from Puñalica are nepheline normative and have basaltic-to-basaltic-andesite compositions (45–56 wt% SiO2) similar to peridotite-derived melts. Sangay MI is also nepheline normative, with high CaO (up to 16 wt% and CaO/Al2O3 < 1) and low silica contents (41.9–44.5 wt%) pointing out an amphibole-bearing clinopyroxenite source. Both volcanoes display volatile-rich compositions (up to 6100 ppm Cl, 2200 ppm F, and 6700 ppm S). These MI cannot be related to their host lavas by fractional crystallization, implying that they represent true primitive liquids. The source of Puñalica MI was metasomatized by slab-derived melts that imprints its low Ba/Th, Sr/Th, and high Th/La (average values of 66, 129, and 0.22, respectively). On the contrary, the slab component added to the source of Sangay MI has a higher Ba/Th, Sr/Th, and low Th/La (average values of 261, 517, and 0.11, respectively) which could suggest a relative contribution of aqueous fluids. This dichotomy is related to the presence of the Grijalva Fracture Zone that separates a younger and hotter oceanic crust to the north (below Puñalica) from a colder and older oceanic crust to the south (below Sangay).


Melt inclusions Olivine Primary magmas Volatile elements Subduction zone Ecuador 



This research was conducted as part of Diego Narvaez, Ph.D., which is financed by the Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT, Ecuador) and the ARTS program of the French Institut de Recherche pour le Developpement (IRD). It is part of a cooperation program carried out between the Instituto Geofısico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador and the IRD, through the Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord”. ER-K acknowledges funding from the French INSU scientific program SYSTER. We thank Nordine Bouden and Etienne Deloule of CRPG (France) for their precious guidance during SIMS analysis. Jean-Luc Devidal, at LMV, is deeply thank for his essential help with the LA-ICPMS measurements and tuning of the EMP. We thank Fran van Wyk des Vries for proof reading the manuscript and correcting the English. This work also benefited by the financial support from the Laboratory of Excellence ClerVolc. This is Laboratory of Excellence ClerVolc contribution no. 309.

Supplementary material

410_2018_1508_MOESM1_ESM.docx (416 kb)
Supplementary material 1 (DOCX 415 KB)
410_2018_1508_MOESM2_ESM.xlsx (23 kb)
Supplementary material 2 (XLSX 22 KB)
410_2018_1508_MOESM3_ESM.xlsx (13 kb)
Supplementary material 3 (XLSX 13 KB)


  1. Ancellin MA, Samaniego P, Vlastélic I, Nauret F, Gannoun A, Hidalgo S (2017) Across-arc versus along-arc Sr–Nd–Pb isotope variations in the Ecuadorian volcanic arc. Geochem Geophys Geosyst 18:1163–1188. CrossRefGoogle Scholar
  2. Aspden JA, Litherland M (1992) The geology and Mesozoic collisional history of the Cordillera Real. Ecuad Tectonophys 205:187–204. CrossRefGoogle Scholar
  3. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827CrossRefGoogle Scholar
  4. Barragan R, Geist D, Hall M, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154:153–166CrossRefGoogle Scholar
  5. Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166:861–886. CrossRefGoogle Scholar
  6. Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138CrossRefGoogle Scholar
  7. Bouvier AS, Deloule E, Métrich N (2010) Fluid inputs to magma sources of St. Vincent and Grenada (Lesser Antilles): new insights from trace elements in olivine-hosted melt inclusions. J Petrol 51:1597–1615. CrossRefGoogle Scholar
  8. Brandt FE, Holm PM, Søager N (2017a) South-to-north pyroxenite–peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ). Contrib Mineral Petrol 172:1. CrossRefGoogle Scholar
  9. Brandt FE, Holm PM, Hansteen TH (2017b) Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia, Argentina. Contrib Mineral Petrol 172:48. CrossRefGoogle Scholar
  10. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47:1147–1175CrossRefGoogle Scholar
  11. Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636CrossRefGoogle Scholar
  12. Cherniak DJ (2015) REE diffusion in olivine. Am Miner 95:362–368CrossRefGoogle Scholar
  13. Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158:563–588CrossRefGoogle Scholar
  14. Clapperton CM (1990) Glacial and volcanic geomorphology of the Chimborazo-Carihuairazo massif, Ecuadorian Andes. Trans R Soc Edinb Earth Sci 81:91–116CrossRefGoogle Scholar
  15. Class C, Miller DM, Goldstein SL, Langmuir CH (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosystems. CrossRefGoogle Scholar
  16. Clocchiatti R, Gioncada A, Mosbah M, Sbrana A (1994) Possible deep origin of sulfur output at Vulcano (Southern Italy) in the light of melt inclusion studies. Acta Vulcanol 5:49–53Google Scholar
  17. Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology 37:571–574CrossRefGoogle Scholar
  18. Danyushevsky LV (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43:1651–1671CrossRefGoogle Scholar
  19. Danyushevsky LV (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J Petrol 45:2531–2553CrossRefGoogle Scholar
  20. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83CrossRefGoogle Scholar
  21. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790CrossRefGoogle Scholar
  22. Elburg MA, Kamenetsky VS, Foden JD, Sobolev A (2007) The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): mineral and melt inclusion evidence. Chem Geol 240:260–279. CrossRefGoogle Scholar
  23. Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Geophysical monograph series. American Geophysical Union, Washington, DC, pp 23–45Google Scholar
  24. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res Solid Earth 102:14991–15019CrossRefGoogle Scholar
  25. Falloon TJ, Danyushevky LV, Green DH (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J Petrol 42:2363–2390CrossRefGoogle Scholar
  26. Feininger T, Seguin MK (1983) Simple Bouguer gravity anomaly field and the inferred crustal structure of the continental Ecuador. Geology 11:40–44CrossRefGoogle Scholar
  27. Frezzotti ML (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299CrossRefGoogle Scholar
  28. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  29. Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41CrossRefGoogle Scholar
  30. Gaetani GA, Asimow PD, Stolper EM (2008) A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth Planet Sci Lett 272:720–729. CrossRefGoogle Scholar
  31. Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid re-equilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918CrossRefGoogle Scholar
  32. Gaetani GA, O’Leary JA, Koga KT, Hauri EH, Rose-Koga EF, Monteleone BD (2014) Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib Mineral Petrol 167:965. CrossRefGoogle Scholar
  33. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31:565–568CrossRefGoogle Scholar
  34. Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1–35. CrossRefGoogle Scholar
  35. Gioncada A, Clocchiatti R, Sbrana A, Bottazzi P, Massare D, Ottolini L (1998) A study of melt inclusions at Vulcano (Aeolian Islands, Italy): insights on the primitive magmas and on the volcanic feeding system. Bull Volcanol 60:(286–306CrossRefGoogle Scholar
  36. Greene AR (2006) A Detailed Geochemical Study of Island Arc Crust: the Talkeetna Arc Section, South-Central Alaska. J Petrol 47:1051–1093CrossRefGoogle Scholar
  37. Grove T, Parman S, Bowring S, Price R, Baker M (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396CrossRefGoogle Scholar
  38. Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439CrossRefGoogle Scholar
  39. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890CrossRefGoogle Scholar
  40. Guillier B, Chatelain JL, Jaillard E, Yepes H, Poupinet G, Fels JF (2001) Seismological evidence on the geometry of the Orogenic System in central-northern Ecuador (South America). Geophys Res Lett 28:3749–3752CrossRefGoogle Scholar
  41. Gutscher MA, Malavieille J, Lallemand S, Collot JY (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270CrossRefGoogle Scholar
  42. Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6CrossRefGoogle Scholar
  43. Halliday AN, Lee DC, Tommasin S, Davies GR, Paslick CR, Fitton GJ, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichments in the sub oceanic mantle. Earth Planet Sci Lett 133:379–395CrossRefGoogle Scholar
  44. Harpp KS, Wanless VD, Otto RH, Hoernle K, Werner R (2005) The Cocos and Carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction. J Petrol 46:109–133CrossRefGoogle Scholar
  45. Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526CrossRefGoogle Scholar
  46. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen JP, Cotten J (2007) Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geotherm Res 159:366–392CrossRefGoogle Scholar
  47. Hidalgo S, Gerbe MC, Martin H, Samaniego P, Bourdon E (2012) Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr–Nd–O isotopes. Lithos 132–133:180–192CrossRefGoogle Scholar
  48. Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473CrossRefGoogle Scholar
  49. Hirose K, Kushiro I (1993) Partial melting of dry peridotite at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  50. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208CrossRefGoogle Scholar
  51. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  52. Jagoutz O, Kelemen PB (2015) Role of arc processes in the formation of continental crust. Annu Rev Earth Planet Sci 43:12.1–12.42CrossRefGoogle Scholar
  53. Jaillard E, Bengtson P, Ordoñez M, Vaca W, Dhondt A, Suárez J, Toro J (2008) Sedimentary record of terminal Cretaceous accretions in Ecuador: the Yunguilla Group in the Cuenca area. J South Am Earth Sci 25:133–144CrossRefGoogle Scholar
  54. Jugo PJ, Luth RW, Richards JP (2005) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim Cosmochim Acta 69:497–503CrossRefGoogle Scholar
  55. Kelemen PB, Hanghøj K, Greene AR (2014) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on geochemistry. Elsevier, Amsterdam, pp 749–806Google Scholar
  56. Kellogg JN, Vega V, Stailings TC, Aiken CL (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from global positioning system geodetic studies and gravity. Geol Soc Am Spec Pap 295:75–90Google Scholar
  57. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  58. Klimm K, Blundy JD, Green TH (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol 49:523–553CrossRefGoogle Scholar
  59. Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol 142:347–360CrossRefGoogle Scholar
  60. Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164:317–339CrossRefGoogle Scholar
  61. Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, DC, pp 109–122Google Scholar
  62. Labanieh S, Chauvel C, Germa A, Quidelleur X (2012) Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. J Petrol 53:2441–2464CrossRefGoogle Scholar
  63. Laporte D, Toplis MJ, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146:463–484CrossRefGoogle Scholar
  64. Le Voyer M, Rose-Koga EF, Laubier M, Schiano P (2008) Petrogenesis of arc lavas from the Rucu Pichincha and Pan de Azucar volcanoes (Ecuadorian arc): major, trace element, and boron isotope evidences from olivine-hosted melt inclusions. Geochem Geophys Geosyst 9:Q12027. CrossRefGoogle Scholar
  65. Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595CrossRefGoogle Scholar
  66. Leroux P, Shirey S, Hauri E, Perfit M, Bender J (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231CrossRefGoogle Scholar
  67. Médard E, Schmidt M, Schiano P, Ottolini L (2006) Melting of Amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47:481–504CrossRefGoogle Scholar
  68. Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402CrossRefGoogle Scholar
  69. Métrich N, Clocchiatti R, Mosbah M, Chaussidon M (1993) The 1989–1990 activity of Etna magma mingling and ascent of H2O–Cl–S-rich basaltic magma. Evidence from melt inclusions. J Volcanol Geotherm Res 59:131–144CrossRefGoogle Scholar
  70. Métrich N, Schiano P, Clocchiatti R, Maury RC (1999) Transfer of sulfur in subduction settings: an example from Batan island (Luzon volcanic arc, Philippines). Earth Planet Sci Lett 167:1–14CrossRefGoogle Scholar
  71. Métrich N, Allard P, Spilliaert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet Sci Lett 228:1–17CrossRefGoogle Scholar
  72. Michaud F, Chabert A, Collot JY, Sallarès V, Flueh ER, Charvis P, Graindorge D, Gutscher MA, Bialas G (2005) Fields of multikilometer-scale sub-circular depressions in the Carnegie Ridge sedimentary blanket: effect of underwater carbonate dissolution? Mar Geol 216:205–219. CrossRefGoogle Scholar
  73. Monzier M, Robin C, Samaniego P, Hall ML, Cotten J, Mothes P, Arnaud N (1999) Sangay volcano, Ecuador: structural development, present activity and petrology. J Volcanol Geotherm Res 90:49–79CrossRefGoogle Scholar
  74. Myers ML, Geist DJ, Rowe MC, Harpp KS, Wallace PJ, Dufek J (2014) Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. Bull Volcanol 76:872. CrossRefGoogle Scholar
  75. Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167:1015CrossRefGoogle Scholar
  76. O’Hara MJ (1976) Data reduction and projection schemes for complex compositions. Prog Exp Petrol 6:103–126Google Scholar
  77. Ordóñez J (2012) Depósitos volcánicos del Pleistoceno Tardío en la cuenca de Ambato: caracterización, distribución y origen. EPN, QuitoGoogle Scholar
  78. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  79. Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919. CrossRefGoogle Scholar
  80. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944. CrossRefGoogle Scholar
  81. Plank T (2014) The chemical composition of subducting sediments. Treatise on Geochemistry. Elsevier, Amsterdam, pp 607–629Google Scholar
  82. Pratt WT, Duque P, Ponce M (2005) An autochthonous geological model for the eastern Andes of Ecuador. Tectonophysics 399:251–278. CrossRefGoogle Scholar
  83. Prevot R, Chatelain J, Guillier B, Yepes H (1996) Mapping of the P-wave velocity structure beneath the Ecuadorian Andes: evidence for continuity of the Central Andes. Comptes Rendus Acad Sci Ser II-A 323:833–840Google Scholar
  84. Proust JN, Martillo C, Michaud F, Collot JY, Dauteuil O (2016) Subduction of seafloor asperities revealed by a detailed stratigraphic analysis of the active margin shelf sediments of Central Ecuador. Mar Geol 380:345–362. CrossRefGoogle Scholar
  85. Robin C, Eissen JP, Samaniego P, Martin H, Hall ML, Cotten J (2009) Evolution of the late Pleistocene Mojanda–Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol 71:233–258. CrossRefGoogle Scholar
  86. Rose-Koga EF, Koga KT, Schiano P, Le Voyer M, Shimizu N, Whitehouse MJ, Clocchiatti R (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279CrossRefGoogle Scholar
  87. Rose-Koga EF, Koga KT, Hamada M, Hélouis T, Whitehouse MJ, Shimizu N (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planets Space 66:1–12CrossRefGoogle Scholar
  88. Sallarès V, Charvis P (2003) Crustal thickness constraints on the geodynamic evolution of the Galapagos Volcanic Province. Earth Planet Sci Lett 214:545–559CrossRefGoogle Scholar
  89. Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology 30:967–970CrossRefGoogle Scholar
  90. Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005) Temporal evolution of magmatism in the northern volcanic zone of the Andes: the geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol 46:2225–2252. CrossRefGoogle Scholar
  91. Samaniego P, Eissen JP, Le Pennec JL, Robin C, Hall ML, Mothes P, Chavrit D, Cotten J (2008) Pre-eruptive physical conditions of El Reventador volcano (Ecuador) inferred from the petrology of the 2002 and 2004–05 eruptions. J Volcanol Geotherm Res 176:82–93CrossRefGoogle Scholar
  92. Samaniego P, Robin C, Chazot G, Bourdon E, Cotten J (2010) Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador). Contrib Mineral Petrol 160:239–260CrossRefGoogle Scholar
  93. Samaniego P, Barba D, Robin C, Fornari M, Bernard B (2012) Eruptive history of Chimborazo volcano (Ecuador): a large, ice-capped and hazardous compound volcano in the Northern Andes. J Volcanol Geotherm Res 221–222:33–51. CrossRefGoogle Scholar
  94. Schiano P, Eiler JM, Hutcheon ID, Stolper EM (2000) Primitive CaO-rich, silica-undersaturated melts in island arc: evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochem Geophys Geosyst 1:1999GC000032CrossRefGoogle Scholar
  95. Schiano P, Clocchiatti R, Ottolini L, Sbrana A (2004) The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: a melt inclusion approach. Earth Planet Sci Lett 220:121–137CrossRefGoogle Scholar
  96. Schiano P, Monzier M, Eissen JP, Martin H, Koga KT (2010) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol 160:297–312CrossRefGoogle Scholar
  97. Schmidt MW, Jagoutz O (2017) The global systematics of primitive arc melts. Geochem Geophys Geosyst. CrossRefGoogle Scholar
  98. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  99. Smith DJ (2014) Clinopyroxene precursors to amphibole sponge in arc crust. Nat Commun 5:4329CrossRefGoogle Scholar
  100. Sorbadère F, Schiano P, Métrich N, Garaebiti E (2011) Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contrib Mineral Petrol 162:995–1009CrossRefGoogle Scholar
  101. Sorbadère F, Schiano P, Métrich N (2013a) Constraints on the origin of nepheline-normative primitive magmas in island arcs inferred from olivine-hosted melt inclusion compositions. J Petrol 54:215–233CrossRefGoogle Scholar
  102. Sorbadère F, Schiano P, Métrich N, Bertagnini A (2013b) Small-scale coexistence of island-arc- and enriched-MORB-type basalts in the central Vanuatu arc. Contrib Mineral Petrol 166:1305–1321CrossRefGoogle Scholar
  103. Spandler C, Pirard C (2013) Element recycling from subducting slabs to arc crust: a review. Lithos 170–171:208–223CrossRefGoogle Scholar
  104. Spilliaert N, Métrich N, Allard P (2006) S–Cl–F degassing pattern of water-rich alkali basalt: modelling and relationship with eruption styles on Mount Etna volcano. Earth Planet Sci Lett 248:772–786CrossRefGoogle Scholar
  105. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203CrossRefGoogle Scholar
  106. Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345CrossRefGoogle Scholar
  107. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90CrossRefGoogle Scholar
  108. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  109. Vaggelli G, De Vivo B, Triglla R (1993) Silicate-melt inclusions in recent Vesuvius lavas (1631–1944): II. Analytical chemistry. J Volcanol Geotherm Res 58:367–376CrossRefGoogle Scholar
  110. van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F–Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373CrossRefGoogle Scholar
  111. Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the Western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618CrossRefGoogle Scholar
  112. Wallace P, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874CrossRefGoogle Scholar
  113. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  114. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191. CrossRefGoogle Scholar
  115. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  116. Yepes H, Audin L, Alvarado A, Beauval C, Aguilar J, Font Y, Cotton F (2016) A new view for the geodynamics of Ecuador: implication in seismogenic source definition and seismic hazard assessment. Tectonics 35:1249–1279. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Magmas et VolcansUniversité Clermont Auvergne, CNRS, IRD, OPGCClermont-FerrandFrance
  2. 2.Departamento de GeologíaEscuela Politécnica NacionalQuitoEcuador
  3. 3.Instituto Geofísico, Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations