Geochemical and geochronological evidence for a Middle Permian oceanic plateau fragment in the Paleo-Tethyan suture zone of NE Iran

  • Gültekin TopuzEmail author
  • Ernst Hegner
  • Seyed Masoud Homam
  • Lukas Ackerman
  • Jörg A. Pfänder
  • Hadi Karimi
Original Paper


The mafic–ultramafic Fariman complex in northeastern Iran has been interpreted as a Paleo-Tethyan ophiolitic fragment with subduction- and plume-related characteristics as well as a basin deposit on an active continental margin. Contributing to this issue, we present geochemical, geochronological, and mineralogical data for transitional and tholeiitic basalts. Thermodynamic modeling suggests picritic parental magmas with 16–21 wt% MgO formed at plume-like mantle potential temperatures of ca. 1460–1600 °C. Rare pyroxene spinifex textures and skeletal to feather-like clinopyroxene attest to crystallization from undercooled magma and high cooling rates. Chromium numbers and TiO2 concentrations in spinel are similar to those in intraplate basalts. 40Ar–39Ar dating of magmatic hornblende yielded a plateau age of 276 ± 4 Ma (2σ). Transitional basalt with OIB-like trace element characteristics is the predominant rock-type; less frequent are tholeiitic basalts with mildly LREE depleted patterns and picrites with intermediate trace element characteristics. All samples show MORB-OIB like Pb/Ce, Th/La, and Th/Nb ratios which preclude subduction-modified mantle sources and felsic crustal material. Tholeiitic basalts and related olivine cumulate rocks show MORB-like initial εNd values of + 9.4 to + 6.2 which define a mixing line with the data for the transitional basalts (εNd ca. + 2.6). Initial 187Os/188Os ratios of 0.124–0.293 support mixed sources with a high proportion of recycled mafic crust in the transitional basalts. High concentrations of highly siderophile elements are in agreement with the high mantle potential temperatures and inferred high-melting degrees. It is argued that the Fariman complex originated by melting of a mantle plume component as represented by the OIB-like transitional basalt and entrained asthenosphere predominant in the MORB-like tholeiites. Two lines of evidence such as association of the Fariman complex with pelagic to neritic sedimentary rocks and the tectonic position at the boundary of two continental blocks defined by ophiolites and accretionary complexes of different ages suggest formation in an oceanic domain. Thus, we interpret it as a fragment of an oceanic plateau, which escaped subduction and was accreted as exotic block in the Paleo-Tethyan suture zone.


Picrite Nd and Os isotopes Geochemistry Mantle plume Oceanic plateau Paleo-Tethys The Mashhad–Fariman complex Iran 



We acknowledge discussions with A. M. Celâl Şengör, Aral I. Okay, Behnam Rahimi, Farzin Ghaemi, and Matthias Willbold. Mutlu Özkan and Erbe Nur Atlı helped with sample preparation. Analytical work was financed by the Department of Earth & Environmental Sciences at LMU. Thanks go to the team of the Reactor Services Division of the Research Centre in Řež, Czech Republic. This study has been supported by the Turkish Academy of Sciences (TÜBA) young scientist encouragement program. We thank Jana Ďurišová (Institute of Geology of the CAS) for the trace element and HSE analyses, and Emin Çiftci, Martin Yates, Melanie Kaliwoda and Dirk Müller for help during electron microprobe analyses. LA acknowledges the Scientific Program RVO67985831 of the Institute of Geology of the CAS. Constructive and thorough reviews by Jörg Geldmacher and Shoji Arai are highly appreciated.

Supplementary material

410_2018_1506_MOESM1_ESM.jpg (204 kb)
Supplementary material 1 (JPG 204 KB)
410_2018_1506_MOESM2_ESM.xlsx (11 kb)
Supplementary material 2 (XLSX 11 KB)
410_2018_1506_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 16 KB)
410_2018_1506_MOESM4_ESM.docx (16 kb)
Supplementary material 4 (DOCX 15 KB)
410_2018_1506_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 13 KB)
410_2018_1506_MOESM6_ESM.xlsx (82 kb)
Supplementary material 6 (XLSX 82 KB)
410_2018_1506_MOESM7_ESM.xlsx (14 kb)
Supplementary material 7 (XLSX 13 KB)
410_2018_1506_MOESM8_ESM.xls (36 kb)
Supplementary material 8 (XLS 36 KB)


  1. Alard O, Griffin WL, Pearson NJ et al (2002) New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet Sci Lett 203:651–663CrossRefGoogle Scholar
  2. Alavi M (1979) The Virani ophioiite complex and surrounding rocks. Geol Rundsch 68:334–341CrossRefGoogle Scholar
  3. Alavi M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geol Soc Am Bull 103:983–992CrossRefGoogle Scholar
  4. Alavi M (1992) Thrust tectonics of the Binaloud region: NE Iran. Tectonics 11:360–370CrossRefGoogle Scholar
  5. Alavi M, Vaziri H, Seyed-Emami K, Lasemi Y (1997) The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575CrossRefGoogle Scholar
  6. Albarède F (1992) How deep do common basaltic magmas form and differentiate? J Geophys Res 97:10997–11009CrossRefGoogle Scholar
  7. Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184CrossRefGoogle Scholar
  8. Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204CrossRefGoogle Scholar
  9. Arndt NT, Lesher CM, Barnes SJ (2008) Komatiite. Cambridge University Press, Cambridge, xiv + 467 pCrossRefGoogle Scholar
  10. Arrial P-A, Billen MI (2013) Influence of geometry and eclogitization on oceanic plateau subduction. Earth Planet Sci Lett 363:34–43CrossRefGoogle Scholar
  11. Baitis HW, Swanson FJ (1976) Ocean rise-like basalts within the Galapagos Archipelago. Nature 259:195–197CrossRefGoogle Scholar
  12. Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550CrossRefGoogle Scholar
  13. Ben-Avraham Z, Nur A, Jones D, Cox A (1981) Continental accretion: from oceanic plateaus to allochthonous terranes. Science 213:47–54CrossRefGoogle Scholar
  14. Berberian M (1983) The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Can J Earth Sci 20:163–183CrossRefGoogle Scholar
  15. Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of lran. Can J Earth Sci 18:210–265CrossRefGoogle Scholar
  16. Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878CrossRefGoogle Scholar
  17. Birck JL, Barman MR, Capmas F (1997) Re-Os isotopic measurements at the femtomole level in natural samples. Geostand Newslett J Geostand Geoanal 20:19–27CrossRefGoogle Scholar
  18. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from equilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57CrossRefGoogle Scholar
  19. Brooks C, Hart SR, Hofmann A, James DE (1976) Rb-Sr mantle isochrons from oceanic regions. Earth Planet Sci Lett 32:51–61CrossRefGoogle Scholar
  20. Buchs DM, Baumgartner PO, Baumgartner-Mora C, Bandini AN, Jackett S-J, Diserens M-O, Stucki J (2009) Late Cretaceous to Miocene seamount accretion and mélange formation in the Osa and Burica Peninsulas (Southern Costa Rica): episodic growth of a convergent margin. In: James KH, Lorenta MA, Pindel JL (eds) The Origin and evolution of the Caribbean plate. Geol Soc London Spec Publ 328, pp. 411–456Google Scholar
  21. Buchs DM, Bagheri S, Martin L, Hermann J, Arculus R (2013) Paleozoic to Triassic ocean opening and closure preserved in Central Iran: constraints from the geochemistry of meta-igneous rocks of the Anarak area. Lithos 172–173:267–287CrossRefGoogle Scholar
  22. Campbell IH (2005) Large igneous provinces and mantle plume hypothesis. Elements 1:265–269CrossRefGoogle Scholar
  23. Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99:79–93CrossRefGoogle Scholar
  24. Carlson RW (2005) Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 82:249–272CrossRefGoogle Scholar
  25. Chase CG (1981) Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet Sci Lett 52:277–284CrossRefGoogle Scholar
  26. Chauvel C, Hemond C (2000) Melting of a complete section of oceanic crust: trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst 1:1001: CrossRefGoogle Scholar
  27. Cohen AS, Waters FG (1996) Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Anal Chim Acta 332:269–275CrossRefGoogle Scholar
  28. Cox KJ, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, St Leonards, 450 pCrossRefGoogle Scholar
  29. Day JMD (2013) Hotspot volcanism and highly siderophile elements. Chem Geol 341:50–74CrossRefGoogle Scholar
  30. Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo J-C (2009) Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary Island lavas. Geology 37:555–558CrossRefGoogle Scholar
  31. Doucet S, Weis D, Scoates JS, Nicolaysen K, Frey FA, Giret A (2002) The depleted mantle component in Kerguelen Archipelago basalts: petrogenesis of tholeiitic–transitional basalts from the Loranchet peninsula. J Petrol 43:341–1366CrossRefGoogle Scholar
  32. Eftekharnezhad J, Behroozi A (1991) Geodynamic significance of recent discoveries of ophiolites and Late Paleozoic rocks in NE-lran (including Kopet Dagh). Abh Geol Bundesanst 36:89–100Google Scholar
  33. Fitton JG, Saunders AD, Kempton PD, Hardarson BS (2003) Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst 4:1032. CrossRefGoogle Scholar
  34. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518CrossRefGoogle Scholar
  35. Gannoun A, Burton KW, Day JMD et al (2016) Highly siderophile element and Os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings. Rev Mineral Geochem 81:651–724CrossRefGoogle Scholar
  36. Gautier I, Weis D, Mennessier J-P, Vidal P, Gire A, Loubet M (1990) Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean): evolution of the mantle sources from ridge to intraplate position. Earth Planet Sci Lett 100:59–76CrossRefGoogle Scholar
  37. Geldmacher J, Hoernle K, Bogaard PVD, Hauff F, Klüegel A (2008) Age and geochemistry of the Central American forearc basement (DSDP Leg 67 and 84): Insights into Mesozoic arc volcanism and seamount accretion on the Fringe of the Caribbean LIP. J Petrol 41:1781–1815CrossRefGoogle Scholar
  38. Ghavi J, Karimpour MH, Mazaheri SA, Pan Y (2018) Triassic I-type granitoids from the Torbat e Jam area, northeastern Iran: Petrogenesis and implications for Paleotethys tectonics. J Asian Earth Sci 164:159–178CrossRefGoogle Scholar
  39. Ghazi AM, Hassanipak AA, Tucker PJ, Mobasher K, Duncan RA (2001) Geochemistry and 40Ar-39Ar ages of the Mashhad ophiolite, NE Iran: A rare occurrence of a 300 Ma (Paleo-Tethys) oceanic crust. American Geophysical Union, Fall Meeting, Abstract I/12C-0993Google Scholar
  40. Hanan BB, Blichert-Toft J, Kingsley R, Schilling J-G (2000) Depleted Iceland mantle plume geochemical signature: artifact of multicomponent mixing? Geochem Geophys Geosyst 1:1003. CrossRefGoogle Scholar
  41. Hegner E, Walter HJ, Satir M (1995) Pb–Sr–Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany. Contrib Mineral Petrol 122:322–335CrossRefGoogle Scholar
  42. Hegner E, Klemd R, Kröner A, Corsini M, Alexeiev DV, Iaccheri LM, Zack T, Dulski P, Xia X, Windley BF (2010) Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the South Tianshan Orogen of Kyrgyzstan. Am J Sci 310:916–950CrossRefGoogle Scholar
  43. Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9:Q09001. CrossRefGoogle Scholar
  44. Herzberg C, Asimow P (2015) PRIMELT3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem Geophys Geosyst 16:563–578CrossRefGoogle Scholar
  45. Herzberg C, Gazel E (2009) Petrological evidence for secular cooling in mantle plumes. Nature 458:619–622CrossRefGoogle Scholar
  46. Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883CrossRefGoogle Scholar
  47. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8:Q02006. CrossRefGoogle Scholar
  48. Hoernle K, Werner R, Morgan JP, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galapagos plume for at least 14 m.y. Geology 28:435–438CrossRefGoogle Scholar
  49. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45CrossRefGoogle Scholar
  50. Jonášová Š, Ackerman L, Žák K et al (2016) Geochemistry of impact glasses and target rocks from the Zhamanshin impact structure, Kazakhstan: implications for mixing of target and impactor matter. Geochim Cosmochim Acta 190:239–264CrossRefGoogle Scholar
  51. Karimpour MH, Stern CR, Farmer L (2010) Zircon U–Pb geochronology, Sr–Nd isotope analyses, and petrogenetic study of the Dehnow diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. J Asian Earth Sci 37:384–393CrossRefGoogle Scholar
  52. Kerr AC (2014) Oceanic Plateaus. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd Edition, vol 4. Elsevier, Oxford, pp 631–667CrossRefGoogle Scholar
  53. Kerr AC, Saunders AD, Tarney J, Berry NH (1995) Depleted mantle-plume geochemical signatures: no paradox for plume theories. Geology 23:843–846CrossRefGoogle Scholar
  54. Kozur H, Mostler H (1991) Pelagic Permian conodonts from an oceanic sequence at Sang-Sefid (Fariman, NE-Iran). Abh Geol Bundesanst 38:101–110Google Scholar
  55. Lee J-Y, Marti K, Severinghaus JP, Kawamura K, Yoo H-S, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512CrossRefGoogle Scholar
  56. Lee C-TA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33CrossRefGoogle Scholar
  57. Ludwig KR (2008) Isoplot 3.70. A geochronological Toolkit for Microsoft Excel. Berkeley Geochron Cent Spec Publ 4:1–76Google Scholar
  58. Majidi B (1981) The ultrabasic lava flows of Mahhad, northeast Iran. Geol Mag 118:49–58CrossRefGoogle Scholar
  59. Majidi B (1983) The geochemistry of ultrabasic and basic lava flows occurrences in north-east Iran. In: Geodynamic Project (Geotraverse) in Iran. Rep Geol Surv Iran 51:463–467Google Scholar
  60. Mirnejad H, Lalonde AE, Obeid M, Hassanzadeh J (2013) Geochemistry and petrogenesis of Mashhad granitoids: an insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos 170–171:105–116CrossRefGoogle Scholar
  61. Moghadam HS, Li X-H, Ling X-X, Stern R, Khedr MZ, Chiaradia M, Gharbani G, Arai S, Tamura A (2015) Devonian to Permian evolution of the Paleo-Tethys ocean: new evidence from Darrehanjir-Mashhad “ophiolites”, NE Iran. Gondwana Res 28:781–799CrossRefGoogle Scholar
  62. Niu Y, Wilson M, Humphreys ER, O’Hara MJ (2011) The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. J Petrol 52:1443–1468CrossRefGoogle Scholar
  63. Okay AI (2000) Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau? In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonic and magmatism in Turkey and surrounding area. Geol Soc London Spec Publ 173, pp 25–41Google Scholar
  64. Okay AI, Noble PJ, Tekin UK (2011) Devonian radiolarian ribbon cherts from the Karakaya Complex, NW Turkey: implications for the Paleo-Tethyan evolution. CR Palevol 10:1–10CrossRefGoogle Scholar
  65. Palme H, O’Neill HStC (2014) Cosmochemical estimates of mantle composition. Treatise on Geochemistry 2nd Edn, 1–39Google Scholar
  66. Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes 12, pp 79–113Google Scholar
  67. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  68. Peucker-Ehrenbrink B, Jahn B (2001) Rhenium–osmium isotope systematics and platinum group element concentrations: Loess and the upper continental crust. Geochem Geophys GeosystGoogle Scholar
  69. Pfänder JA, Sperner B, Ratschbacher L, Fischer A, Meyer M, Leistner M, Schaeben H (2014) High-resolution 40Ar/39Ar dating using a mechanical sample transfer system combined with a high-temperature cell for step heating experiments and a multicollector ARGUS noble gas mass spectrometer. Geochem Geophys Geosyst 15:2713–2726CrossRefGoogle Scholar
  70. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944CrossRefGoogle Scholar
  71. Pouchou JL, Pichoir F (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Ae´rospatiale 3:13–38Google Scholar
  72. Regelous M, Hofmann AW, Abouchami W, Galer JSG (2002) Geochemistry of lavas from the Emperor seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140CrossRefGoogle Scholar
  73. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  74. Rudge JF (2006) Mantle pseudo-isochrons revisited. Earth Planet Sci Lett 249:494–513CrossRefGoogle Scholar
  75. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64. CrossRefGoogle Scholar
  76. Ruttner AW (1991) Geology of the Aghdarband area (Kopet dagh, NE-lran). Abh Geol Bundesanstalt 38:7–79Google Scholar
  77. Salters VJM, Storey M, Sevigny JH, Whitechurch H (1992) Trace element and isotopic characteristics of Kerguelen-Heard plateau basalts. In: Wise SW, Jr, Schlich R, et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 120: 55–62Google Scholar
  78. Saunders AD, Tamey J, Kerr AC, Kent RW (1996) The formation and fate of large oceanic igneous provinces. Lithos 37:81–95CrossRefGoogle Scholar
  79. Şengör AMC (1978) Mid-Mesozoic closure of the Permo-Triassic Tethys and its implications. Nature 279:590–593CrossRefGoogle Scholar
  80. Şengör AMC (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Geol Soc Am Spec Paper 195, 82 p., Boulder, COGoogle Scholar
  81. Şengör AMC (1990) A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman. In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman region. Geol Soc Spec Publ 49, pp 797–831Google Scholar
  82. Şengör AMC, Atayman S (2009) The Permian extinction and the Tethys: an exercise in global geology. The Geological Society of America, Special Paper 448, 96 p., Boulder, COGoogle Scholar
  83. Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chim Acta 67:2136–2214CrossRefGoogle Scholar
  84. Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu Rev Earth Planet Sci 26:423–500CrossRefGoogle Scholar
  85. Shulgin A, Kopp H, Mueller C, Planert L, Lueschen E, Flueh ER, Djajadihardja Y (2011) Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophys J Int 184:12–28CrossRefGoogle Scholar
  86. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33CrossRefGoogle Scholar
  87. Stöcklin J (1974) Possible ancient continental margins in Iran. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer Science Business Media, New York, pp 873–887CrossRefGoogle Scholar
  88. Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarède F, Gronvold K (2003) Theistareykir revisited. Geochem Geophys Geosyst 4, 8507, CrossRefGoogle Scholar
  89. Sun SS (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Trans R Soc London A297:409–445CrossRefGoogle Scholar
  90. Taheri J, Fursich FT, Wilmsen M (2009) Stratigraphy, depositional environments and geodynamic significance of the Upper Bajocian-Bathonian Kashaf Rud formation, NE Iran. In: Brunet M-F, Wilmsen M, Granath JW (eds) South Caspian to Central Iran Basins. Geol Soc London Spec Publ 312, p 175–188Google Scholar
  91. Tetreault JL, Buiter SJH (2014) Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. Solid Earth 5:1243–1275CrossRefGoogle Scholar
  92. Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386CrossRefGoogle Scholar
  93. Timm C, Davy B, Haase K, Hoernle KA, Graham IJ, de Ronde CEJ, Woodhead J, Bassett D, Hauff F, Mortimer N, Seebeck HC, Wysoczanski RJ, Caratori-Tontini F, Gamble JA (2014) Subduction of the oceanic Hikurangi plateau and its impact on the Kermadec arc. Nature Commun 5:4923. CrossRefGoogle Scholar
  94. Topuz G, Göçmengil G, Rolland Y, Çelik ÖF, Zack T, Schmitt AK (2013) Jurassic accretionary complex and ophiolite from northeast Turkey: no evidence for the Cimmerian continental ribbon. Geology 45:255–258CrossRefGoogle Scholar
  95. Topuz G, Okay AI, Altherr R, Schwarz WH, Sunal G, Altınkaynak L (2014) Triassic warm subduction in northeast Turkey: evidence from the Ağvanis metamorphic rocks. Island Arc 23:181–205CrossRefGoogle Scholar
  96. Topuz G, Okay AI, Schwarz W-H, Sunal G, Altherr A, Kylander-Clark ARC (2018) A middle Permian ophiolite fragment in Late Triassic greenschist- to blueschist-facies rocks in NW Turkey: an additional pulse of suprasubduction-zone ophiolite formation in the Tethyan belt? Lithos 300–301:121–135CrossRefGoogle Scholar
  97. Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge, 594 pCrossRefGoogle Scholar
  98. Villa IM, Grobéty B, Kelley SP, Trigila R, Wieler R (1996) Assessing Ar transport paths and mechanisms for McClure Mountains hornblende. Contrib Mineral Petrol 126:67–80CrossRefGoogle Scholar
  99. Villa IM, Hermann J, Müntener O, Trommsdorff V (2000) 39Ar-40Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Mineral Petrol 140:363–381CrossRefGoogle Scholar
  100. White WM (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Annu Rev Earth Planet Sci 38:133–160CrossRefGoogle Scholar
  101. White WM (2013) Geochemistry. Wiley-Blackwell, Chichester, p 660Google Scholar
  102. White WM, Hofmann AW (1978) Geochemistry of the Galfipagos islands: implications for mantle dynamics and evolution. Year Book Carnegie Institute Washington 77:596–606Google Scholar
  103. White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galapagos Islands’ portrait of a pathological mantle plume. J Geophys Res 98:19533–19563Google Scholar
  104. Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst 7:Q04004. CrossRefGoogle Scholar
  105. Wilmsen M, Fursich FT, Taheri J (2009) The Shemshak Group (Lower Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, depositional environments and geodynamic implications. In: Brunet M-F, Wilmsen M, Granath JW (eds) South Caspian to Central Iran Basins. Geol Soc London Spec Publ 312, pp 175–188Google Scholar
  106. Žák K, Skála R, Řanda Z et al (2016) Chemistry of Tertiary sediments in the surroundings of the Ries impact structure and moldavite formation revisited. Geochim Cosmochim Acta 179:287–311CrossRefGoogle Scholar
  107. Zanchetta S, Berra F, Zanchi A, Bergomi M, Caridroit M, Nicora A, Heidarzadeh G (2013) The record of the late Paleozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Res 24:1237–1266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.İstanbul Teknik Üniversitesi, Avrasya Yer Bilimleri EnstitüsüIstanbulTurkey
  2. 2.Department für Geo- und Umweltwissenschaften und GeoBiocenterLudwig-Maximilians-Universität (LMU)MunichGermany
  3. 3.Department of Geology, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  4. 4.Institute of Geology, The Czech Academy of SciencesPrahaCzech Republic
  5. 5.Czech Geological SurveyPrahaCzech Republic
  6. 6.Institut für Geowissenschaften, Technische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations