Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey

  • Dongyang LianEmail author
  • Jingsui Yang
  • Michael Wiedenbeck
  • Yildirim Dilek
  • Alexander Rocholl
  • Weiwei Wu
Original Paper


The Pozanti–Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds varies between − 18.8 and − 28.4‰, with a principle δ13C mode at − 25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the δ15N values range from − 19.1 to 16.6‰, with a δ15N mode of − 9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nano-sized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.


Ophiolite Diamonds Carbon isotope Nitrogen isotope Inclusion 



We thank Fahui Xiong, Wenda Zhou and Prof. Ibrahim Uysal for assistance in the field work, Bin Shi for the assistance in CL imaging. Frédéric Couffignal conducted the SIMS analyses, Anja Schreiber cut the TEM foils of the diamonds, and Richard Wirth conducted TEM analyses. We appreciate their help very much. We would also like to thank Pengfei Zhang, Fei Liu, Paul T. Robinson and Vadim N. Reutsky for their valuable suggestions. We thank the editor and three anonymous reviewers for their thorough and valuable comments that improved this manuscript. This research was supported by the funded by Fundamental Research Funds for the Central Universities (020614380069, 020614380072), the Ministry of Science and Technology of China (2014DFR21270, 201511022, J1618), the National Science Foundation of China (Grants 41672063, 41773029, 41373029,), the China Geological Survey (DD20160023-01, DD20160022-01), and the IGCP-649 project. Y Dilek acknowledges the financial support for this project provided to him by a Lishiguang Scholarship through the Geological Survey of China and the Chinese Academy of Geological Sciences.

Supplementary material

410_2018_1499_MOESM1_ESM.xlsx (23 kb)
Carbon isotopic results of reference materials and the Pozanti–Karsanti diamonds (XLSX 22 KB)
410_2018_1499_MOESM2_ESM.xlsx (22 kb)
Nitrogen isotopic and nitrogen content results of reference materials and the Pozanti–Karsanti diamonds (XLSX 22 KB)


  1. Advokaat EL, van Hinsbergen DJ et al (2014) Late Cretaceous extension and Palaeogene rotation-related contraction in Central Anatolia recorded in the Ayhan-Büyükkışla basin. Int Geol Rev 56(15):1813–1836Google Scholar
  2. Anand M, Taylor LA et al (2004) Nature of diamonds in Yakutian eclogites: views from eclogite tomography and mineral inclusions in diamonds. Lithos 77(1):333–348Google Scholar
  3. Anzolini C, Angel RJ et al (2016) Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 265:138–147Google Scholar
  4. Avcı E, Uysal İ et al (2016) Ophiolitic chromitites from the Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey): implication for crystallization from a fractionated boninitic melt. Ore Geol Rev 90:166–183Google Scholar
  5. Bai W, Zhou M et al (1993) Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can J Earth Sci 30(8):1650–1659Google Scholar
  6. Ballhaus C, Wirth R et al (2017) Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem Perspect Lett 5:42–46Google Scholar
  7. Ballhaus C, Fonseca ROC et al (2018) Reply to comment on ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes by Griffin et al., no evidence for transition ophiolite, metamorphism in the Luobusa ophiolite. Geochem Perspect Lett 7:3–4Google Scholar
  8. Barkley MC, Downs RT et al (2011) Structure of walstromite, BaCa2Si3O9, and its relationship to CaSiO3-walstromite and wollastonite-II. Am Mineral 96(5–6):797–801Google Scholar
  9. Bender ML, Ku T et al (1966) Manganese nodules: their evolution. Science 151(3708):325–328Google Scholar
  10. Bottinga Y (1968) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307Google Scholar
  11. Boyd SR, Pillinger CT et al (1988) Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature 331(6157):604–607Google Scholar
  12. Brenker FE, Vincze L et al (2005) Detection of a Ca-rich lithology in the Earth’s deep (> 300 km) convecting mantle. Earth Planet Sci Lett 236(3):579–587Google Scholar
  13. Bulanova GP, Pearson DG et al (2002) Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir kimberlite, Yakutia. Chem Geol 188(1):105–123Google Scholar
  14. Bulanova GP, Walter MJ et al (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol 160(4):489–510Google Scholar
  15. Burnham AD, Thomson AR et al (2015) Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet Sci Lett 432:374–380Google Scholar
  16. Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1(2):79–84Google Scholar
  17. Cartigny P (2010) Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296(3):329–339Google Scholar
  18. Cartigny P, Harris JW, Taylor A, Davies R, Javoy M (2003) On the possibility of a kinetic fractionation of nitrogen stable isotopes during natural diamond growth. Geochim Cosmochim Acta 67(8):1571–1576Google Scholar
  19. Cartigny P, Harris JW et al (1998) Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280(5368):1421–1424Google Scholar
  20. Cartigny P, De Corte K et al (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol 176(1):265–281Google Scholar
  21. Cartigny P, Palot M et al (2014) Diamond formation: a stable isotope perspective. Annu Rev Earth Planet Sci 42:699–732Google Scholar
  22. Çelik ÖF, Chiaradia M (2008) Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites. Int J Earth Sci 97(6):1151–1164Google Scholar
  23. Çelik ÖF, Michel D (2003) Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geol J 3–4(38):235–256Google Scholar
  24. Chen Y, Yang J et al (2018) Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J Asian Earth Sci 164:179–193Google Scholar
  25. Coplen TB, Krouse HR et al (1992) Reporting of nitrogen-isotope abundances (technical report). Pure Appl Chem 64(6):907–908Google Scholar
  26. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica Et Cosmochimica Acta 12(1):133–149Google Scholar
  27. Das S, Basu AR et al (2017) In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology 45(8):755–758Google Scholar
  28. De S, Heaney PJ et al (1998) Microstructural observations of polycrystalline diamond: a contribution to the carbonado conundrum. Earth Planet Sci Lett 164(3):421–433Google Scholar
  29. Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Acta 44(7):943–961Google Scholar
  30. Deines P, Harris JW et al (1993) Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta 57(12):2781–2796Google Scholar
  31. Dickson J (1991) Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353(6347):842Google Scholar
  32. Dilek Y, Thy P et al (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geol Soc Am Bull 111(8):1192–1216Google Scholar
  33. Dobrzhinetskaya LF, Wirth R et al (2009) High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Natl Acad Sci 106(46):19233–19238Google Scholar
  34. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420Google Scholar
  35. Fujino K, Suzuki K et al (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Mineral 93(4):653–657Google Scholar
  36. Gasparik T, Wolf K et al (1994) Experimental determination of phase relations in the CaSiOt system from 8 to 15 GPa. Am Mineral 79:1219–1222Google Scholar
  37. Griffin WL, Afonso JC et al (2016) Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 57(4):1–30Google Scholar
  38. Gurney JJ, Helmstaedt HH et al (2010) Diamonds through time. Econ Geol 105(3):689–712Google Scholar
  39. Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285(5429):851–860Google Scholar
  40. Harte B (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Miner Mag 74(2):189–215Google Scholar
  41. Hayman PC, Kopylova MG et al (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149(4):430–445Google Scholar
  42. Heaney PJ, Vicenzi EP et al (2005) Strange diamonds: the mysterious origins of carbonado and framesite. Elements 1(2):85–89Google Scholar
  43. Hein JR, Spinardi F et al (2015) Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol Rev 68:97–116Google Scholar
  44. Hinsbergen DJJ, Maffione M et al (2016) Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35(4):983–1014Google Scholar
  45. Hogberg K, Stachel T et al (2016) Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin? Lithos 265:16–30Google Scholar
  46. Howell D, Griffin WL et al (2013) A spectroscopic and carbon-isotope study of mixed-habit diamonds: impurity characteristics and growth environment. Am Mineral 98(1):66–77Google Scholar
  47. Howell D, Griffin WL et al (2015a) Diamonds in ophiolites: contamination or a new diamond growth environment? Earth Planet Sci Lett 430(1):284–295Google Scholar
  48. Howell D, Stern RA et al (2015b) Nitrogen isotope systematics and origins of mixed-habit diamonds. Geochim Cosmochim Acta 157:1–12Google Scholar
  49. Huang Z, Yang J et al (2015) The discovery of diamonds in chromitites of the hegenshan ophiolite, Inner Mongolia. China Acta Geologica Sinica (English Edition) 89(2):341–350Google Scholar
  50. Huss GR (2005) Meteoritic nanodiamonds: messengers from the stars. Elements 1(2):97–100Google Scholar
  51. Javoy M, Pineau F et al (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57(1–2):41–62Google Scholar
  52. Joswig W, Stachel T et al (1999) New Ca-silicate inclusions in diamonds—tracers from the lower mantle. Earth Planet Sci Lett 173(1):1–6Google Scholar
  53. Kaiser W, Bond WL (1959) Nitrogen, a major impurity in common type I diamond. Phys Rev 115(4):857Google Scholar
  54. Kaminsky F (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110(1):127–147Google Scholar
  55. Kaminsky FV, Ryabchikov ID et al (2015) Oxidation potential in the Earth’s lower mantle as recorded by ferropericlase inclusions in diamond. Earth Planet Sci Lett 417:49–56Google Scholar
  56. Kanzaki M, Stebbins JF et al (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys Res Lett 18(3):463–466Google Scholar
  57. Keller RA, Taylor LA et al (1999) Detailed pull-apart of a diamondiferous eclogite xenolith: implications for mantle processes during diamond genesis. Proc 7th Int Kimberlite Conf 1:397–402Google Scholar
  58. Kirkley MB, Gurney JJ et al (1991) The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem 6(5):477–494Google Scholar
  59. Lang AR (1974) On the growth-sectorial dependence of defects in natural diamonds. Proc R Soc Lond A 340(1621):233–248Google Scholar
  60. Lang AR, Bulanova GP et al (2007) Defects in a mixed-habit Yakutian diamond: studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy. J Cryst Growth 309(2):170–180Google Scholar
  61. Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J Geophys Res Solid Earth 110(B11):1–17Google Scholar
  62. Lian D, Yang J et al (2017a) Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti–Karsanti ophiolite, southern Turkey. Am Mineral 102(5):1101–1113Google Scholar
  63. Lian D, Yang J et al (2017b) Geochemical, geochronological, and Sr–Nd isotopic constraints on the origin of the mafic dikes from the Pozanti–Karsanti ophiolite: implications for tectonic evolution. J Geol 125(2):223–239Google Scholar
  64. Lian D, Yang J et al (2018) Mineralogy and geochemistry of peridotites and chromitites in the aladag ophiolite (S. Turkey): melt evolution of the cretaceous neotethyan mantle. J Geol Soc. Google Scholar
  65. Lytwyn JN, Casey JF (1995) The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti–Karsanti ophiolite, Turkey: evidence for ridge subduction. Geol Soc Am Bull 107(7):830–850Google Scholar
  66. McGowan NM, Griffin WL et al (2015) Tibetan chromitites: excavating the slab graveyard. Geology 43(2):179–182Google Scholar
  67. Meyers PA, Eadie BJ (1993) Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Org Geochem 20(1):47–56Google Scholar
  68. Mikhail S, Guillermier C et al (2014a) Empirical evidence for the fractionation of carbon isotopes between diamond and iron carbide from the Earth’s mantle. Geochem Geophys Geosyst 15(4):855–866Google Scholar
  69. Mikhail S, Verchovsky AB et al (2014b) Constraining the internal variability of the stable isotopes of carbon and nitrogen within mantle diamonds. Chem Geol 366:14–23Google Scholar
  70. Minoura K, Hoshino K et al (1997) Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material. Palaeogeogr Palaeoclimatol Palaeoecol 135(1–4):41–50Google Scholar
  71. Narita H, Kichiro K et al (1977) The crystal structures of MnSiO3 polymorphs (rhodonite-and pyroxmangite-type). Mineralogical Journal 8(6):329–342Google Scholar
  72. Nestola F, Korolev N et al (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–242Google Scholar
  73. Ogasawara Y (2005) Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1(2):91–96Google Scholar
  74. Ohashi Y, Finger LW (1978) The role of octahedral cations in pyroxenoid crystal chemistry; I, Bustamite, wollastonite, and the pectolite–schizolite–serandite series. Am Mineral 63(3–4):274–288Google Scholar
  75. Onasch CM, Vennemann TW (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23(12):1103–1106Google Scholar
  76. Palot M, Cartigny P et al (2012) Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet Sci Lett 357:179–193Google Scholar
  77. Parlak O (2016) The tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27(6):901–934Google Scholar
  78. Parlak O, Delaloye M (1999) Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics 301(1–2):145–158Google Scholar
  79. Parlak O, HÖck V et al (2000) Suprasubduction zone origin of the Pozanti–Karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Geol Soc Lond Spec Publ 173(1):219–234Google Scholar
  80. Parlak O, Höck V et al (2002) The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65(1):205–224Google Scholar
  81. Parlak O, Rızaoğlu T et al (2009) Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473(1):173–187Google Scholar
  82. Pearson DG, Shirey SB et al (1999) Re-Os isotope measurements of single sulfide inclusions in a Siberian diamond and its nitrogen aggregation systematics. Geochim Cosmochim Acta 63(5):703–711Google Scholar
  83. Pearson DG, Brenker FE et al (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224Google Scholar
  84. Peters KE, Sweeney RE et al (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol Oceanogr 23(4):598–604Google Scholar
  85. Polat A, Casey JF (1995) A structural record of the emplacement of the Pozanti–Karsanti ophiolite onto the Menderes-Taurus block in the late Cretaceous, eastern Taurides, Turkey. J Struct Geol 17(12):1673–1688Google Scholar
  86. Reagan MK, Pearce JA et al (2017) Subduction initiation and ophiolite crust: new insights from IODP drilling. Int Geol Rev 59(11):1439–1450Google Scholar
  87. Reutsky VN, Harte B et al (2008) Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur J Mineral 20(3):365–374Google Scholar
  88. Reutsky VN, Kowalski PM et al (2017) Experimental and theoretical evidence for surface-induced carbon and nitrogen fractionation during diamond crystallization at high temperatures and high pressures. Crystals 7(7):1–14Google Scholar
  89. Richet P, Bottinga Y et al (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5(1):65–110Google Scholar
  90. Robertson AHF, Parlak O et al (2012) Overview of the Palaeozoic-Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Pet Geosci 18(18):381–404Google Scholar
  91. Robinson PT, Bai W et al (2004) Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications. Spec Publ Geol Soc Lond 226(1):247–272Google Scholar
  92. Robinson PT, Trumbull RB et al (2015) The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res 27(2):486–506Google Scholar
  93. Rohrbach A, Ballhaus C et al (2007) Metal saturation in the upper mantle. Nature 449(7161):456–458Google Scholar
  94. Rohrbach A, Ballhaus C et al (2011) Experimental evidence for a reduced metal-saturated upper mantle. J Petrol 52(4):717–731Google Scholar
  95. Ruskov T, Spirov I et al (2010) Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle. J Metamorph Geol 28(5):551–560Google Scholar
  96. Saka S, Uysal I et al (2014) The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: constraints from the late Cretaceous Pozantı–Karsantı ophiolite, southern Turkey. Lithos 202(1):300–316Google Scholar
  97. Satsukawa T, Griffin WL et al (2015) Messengers from the deep: fossil wadsleyite-chromite microstructures from the mantle transition zone. Sci Rep 5:1–8Google Scholar
  98. Schertl H, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38Google Scholar
  99. Schulze DJ, Harte B et al (2013) Anticorrelation between low δ13C of eclogitic diamonds and high δ18O of their coesite and garnet inclusions requires a subduction origin. Geology 41(4):455–458Google Scholar
  100. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffract Theor Gen Crystallogr 32(5):751–767Google Scholar
  101. Shatsky VS, Zedgenizov DA et al (2014) Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins. Eur J Mineral 26(1):41–52Google Scholar
  102. Shim SH, Duffy TS et al (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res Solid Earth 105(B11):25955–25968Google Scholar
  103. Shirey SB, Cartigny P et al (2013) Diamonds and the geology of mantle carbon. Rev Mineral Geochem 75(1):355–421Google Scholar
  104. Smith EM, Kopylova MG (2014) Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle. Can J Earth Sci 51(5):510–516Google Scholar
  105. Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 34(1):5–32Google Scholar
  106. Stachel T, Harris JW (2009) Formation of diamond in the Earth’s mantle. J Phys Condens Matter 21(36):1–10Google Scholar
  107. Stachel T, Luth RW (2015) Diamond formation—where, when and how?. Lithos 220:200–220Google Scholar
  108. Stachel T, Harris JW et al (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib Mineral Petrol 140(1):16–27Google Scholar
  109. Stachel T, Brey GP et al (2005) Inclusions in sublithospheric diamonds: glimpses of deep. Earth Elements 1(2):73–78Google Scholar
  110. Stagno V, Frost DJ et al (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petrol 169(2):1–18Google Scholar
  111. Stern RJ, Reagan M et al (2012) To understand subduction initiation, study forearc crust: to understand forearc crust, study ophiolites. Lithosphere 4(6):469–483Google Scholar
  112. Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 99(1–4):1156–1161Google Scholar
  113. Tappert R (2006) Placer diamonds from Brazil: indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Econ Geol 101(2):453–470Google Scholar
  114. Tappert R, Stachel T et al (2005) Subducting oceanic crust: the source of deep diamonds. Geology 33(7):565–568Google Scholar
  115. Thomassot E, Cartigny P et al (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257(3):362–371Google Scholar
  116. Tian Y, Yang J et al (2015) Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geol Sin 89(2):332–340Google Scholar
  117. Tschauner O, Huang S et al (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359(6380):1136–1139Google Scholar
  118. Walter MJ, Kohn SC et al (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334(6052):54–57Google Scholar
  119. Welbourn CM, Rooney MT et al (1989) A study of diamonds of cube and cube-related shape from the Jwaneng mine. J Cryst Growth 94(1):229–252Google Scholar
  120. Whattam SA, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol 162(5):1031–1045Google Scholar
  121. Wirth R (2004) Focused Ion Beam (FIB). Eur J Mineral 16(6):863–876Google Scholar
  122. Wu Y, Xu M et al (2016) Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos 245(15):109–117Google Scholar
  123. Wu W, Yang J et al (2017) Discovery and significance of diamonds and moissanites in chromitite within the skenderbeu massif of the mirdita zone ophiolite, West Albania. Acta Geol Sin (English Edition) 91(3):882–897Google Scholar
  124. Xiong F, Yang J et al (2016) Diamonds and other exotic minerals recovered from peridotites of the dangqiong ophiolite, western Yarlung-Zangbo Suture Zone, Tibet. Acta Geol Sin (English Edition) 90(2):425–439Google Scholar
  125. Xu X, Yang J et al (2009) Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. J Earth Sci 20(2):284–302Google Scholar
  126. Xu X, Yang J et al (2015) Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res 27(2):686–700Google Scholar
  127. Xu X, Cartigny P et al (2017) Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, polar urals. Lithosphere 10(1):156–169Google Scholar
  128. Yamamoto S, Komiya T et al (2009) Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109(3):314–322Google Scholar
  129. Yang J, Xu Z et al (2003) Discovery of metamorphic diamonds in central China: an indication of a> 4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova 15(6):370–379Google Scholar
  130. Yang J, Dobrzhinetskaya L et al (2007) Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 35(10):875–878Google Scholar
  131. Yang J, Robinson PT et al (2014) Diamonds in ophiolites. Elements 10(2):127–130Google Scholar
  132. Yang J, Meng F et al (2015a) Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res 27(2):459–485Google Scholar
  133. Yang J, Robinson PT et al (2015b) Diamond-bearing ophiolites and their geological occurrence. Episodes 38(4):344–364Google Scholar
  134. Zedgenizov DA, Harte B (2004) Microscale variations of δ13C and N content within a natural diamond with mixed-habit growth. Chem Geol 205(1):169–175Google Scholar
  135. Zedgenizov DA, Kagi H et al (2014) Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem Geol 363:114–124Google Scholar
  136. Zedgenizov DA, Ragozin AL et al (2016) The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochem Int 54(10):890–900Google Scholar
  137. Zedgenizov D, Reutsky V et al (2017) The Carbon and nitrogen isotope characteristics of type Ib-IaA Cuboid diamonds from alluvial placers in the northeastern Siberian platform. Minerals 7(10):1–9Google Scholar
  138. Zhang RY, Yang JS et al (2016) Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: new insights into the deep upper mantle and mantle transition zone. Am Mineral 101(6):1285–1294Google Scholar
  139. Zhang Y, Jin Z et al (2017) High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth Planet Sci Lett 463:151–158Google Scholar
  140. Zhou M, Robinson PT et al (2014) Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 26(1):262–283Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  2. 2.CARMA, Key Laboratory of Deep-Earth Dynamics of MLR, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  3. 3.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Department of Geology and Environmental Earth ScienceMiami UniversityOxfordUSA
  5. 5.Faculty of Earth SciencesChina University of Geosciences (Wuhan)WuhanChina

Personalised recommendations