Advertisement

Lung

, Volume 198, Issue 1, pp 1–11 | Cite as

Lung Ultrasound for the Diagnosis and Management of Acute Respiratory Failure

  • Marjan IslamEmail author
  • Matthew Levitus
  • Lewis Eisen
  • Ariel L. Shiloh
  • Daniel Fein
STATE OF THE ART REVIEW

Abstract

For critically ill patients with acute respiratory failure (ARF), lung ultrasound (LUS) has emerged as an indispensable tool to facilitate diagnosis and rapid therapeutic management. In ARF, there is now evidence to support the use of LUS to diagnose pneumothorax, acute respiratory distress syndrome, cardiogenic pulmonary edema, pneumonia, and acute pulmonary embolism. In addition, the utility of LUS has expanded in recent years to aid in the ongoing management of critically ill patients with ARF, providing guidance in volume status and fluid administration, titration of positive end-expiratory pressure, and ventilator liberation. The aims of this review are to examine the basic foundational concepts regarding the performance and interpretation of LUS, and to appraise the current literature supporting the use of this technique in the diagnosis and continued management of patients with ARF.

Keywords

Lung ultrasound Point-of-care ultrasound Acute respiratory failure Pneumothorax Acute respiratory distress syndrome Pneumonia Pulmonary embolism Diaphragmatic dysfunction 

Notes

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Weinberger S, Drazen JM (2005) Diagnostic procedures in respiratory diseases. Harrison's principles of internal medicine. McGraw-Hill, New York, pp 1505–1508Google Scholar
  2. 2.
    Lichtenstein D, Meziere G (1998) A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med 24:1331–1334PubMedGoogle Scholar
  3. 3.
    Lichtenstein D (2010) Whole body ultrasound in the critically-ill. Springer, Berlin HeidelbergGoogle Scholar
  4. 4.
    Fein D (2015) Lung and pleural ultrasound technique. Point-of-Care ultrasound. Elsevier, Philadelphia, pp 51–58Google Scholar
  5. 5.
    Blaivas M, Lyon M, Duggal S (2005) A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med 12:844–849PubMedGoogle Scholar
  6. 6.
    Cortellaro F, Colombo S, Coen D, Duca PG (2012) Lung ultrasound is an accurate diagnostic tool for the diagnosis of pneumonia in the emergency department. Emerg Med J 29:19–23PubMedGoogle Scholar
  7. 7.
    Jambrik Z, Monti S, Coppola V et al (2004) Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 93:1265–1270PubMedGoogle Scholar
  8. 8.
    Lichtenstein DA, Meziere GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 134:117–125PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D (2019) Lung ultrasound for critically-ill patients. Am J Respir Crit Care Med 199:701–714PubMedGoogle Scholar
  10. 10.
    Goodgame. Imaging Artifacts (2015) Point-of-care ultrasound. Elsevier, Philadelphia, pp 38–45Google Scholar
  11. 11.
    Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O (1997) The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 156:1640–1646PubMedGoogle Scholar
  12. 12.
    Lichtenstein DA, Meziere GA, Lagoueyte JF, Biderman P, Goldstein I, Gepner A (2009) A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically-ill. Chest 136:1014–1020PubMedGoogle Scholar
  13. 13.
    Lichtenstein D, Meziere G, Biderman P, Gepner A (1999) The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med 25:383–388PubMedGoogle Scholar
  14. 14.
    Lee P (2015) Lung ultrasound interpretation. Point-of-care ultrasound. Elsevier, Philadelphia, pp 59–69Google Scholar
  15. 15.
    Lichtenstein D, Meziere G, Seitz J (2009) The dynamic air-bromchogram. A lung ultrasound sign of alveolar consolidation ruling out atelectasis. Chest 135:1421–1425PubMedGoogle Scholar
  16. 16.
    Balik M (2006) Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med 32:318–321PubMedGoogle Scholar
  17. 17.
    Lichtenstein DA (2019) Current misconceptions in lung ultrasound: a short guide for experts. Chest 156:21–25PubMedGoogle Scholar
  18. 18.
    Volpicelli G, Elbarbary M, Blaivas M et al (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38:577–591PubMedGoogle Scholar
  19. 19.
    Hew M, Tay TR (2016) The efficacy of bedside chest ultrasound: from accuracy to outcomes. Eur Respir Rev 25:230–246PubMedGoogle Scholar
  20. 20.
    Ding W, Shen Y, Yang J, He X, Zhang M (2011) Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis. Chest 140:859–866PubMedGoogle Scholar
  21. 21.
    Alrajhi K, Woo MY, Vaillancourt C (2012) Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis. Chest 141:703–708PubMedGoogle Scholar
  22. 22.
    Alrajab S, Youssef AM, Akkus NI, Caldito G (2013) Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care 17:R208PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ebrahimi A, Yousefifard M, Mohammad Kazemi H et al (2014) Diagnostic accuracy of chest ultrasonography versus chest radiography for identification of pneumothorax: a systematic review and meta-analysis. Tanaffos 13:29–40PubMedPubMedCentralGoogle Scholar
  24. 24.
    Avila J, Smith B, Mead T, Jurma D, Dawson M, Mallin M, Dugan A (2018) Does the addition of M-mode to B-mode ultrasound increase the accuracy of identification of lung sliding in traumatic pneumothoraces? J Ultrasound Med 37:2681–2687PubMedGoogle Scholar
  25. 25.
    El Zahran T, El Sayed MJ (2018) Prehospital ultrasound in trauma: a review of current and potential future clinical applications. J Emerg Trauma Shock 11:4–9PubMedPubMedCentralGoogle Scholar
  26. 26.
    Copetti R, Soldati G, Copetti P (2008) Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound 6:16PubMedPubMedCentralGoogle Scholar
  27. 27.
    Singh AK, Mayo PH, Koenig S, Talwar A, Narasimhan M (2018) The use of M-mode ultrasonography to differentiate the causes of B lines. Chest 153:689–696PubMedGoogle Scholar
  28. 28.
    Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D (2014) Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med 21:843–852PubMedGoogle Scholar
  29. 29.
    Martindale JL, Wakai A, Collins SP et al (2016) Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Acad Emerg Med 23:223–242PubMedGoogle Scholar
  30. 30.
    Maw AM, Hassanin A, Ho PM et al (2019) Diagnostic accuracy of point-of-care lung ultrasonography and chest radiography in adults with symptoms suggestive of acute decompensated heart failure: a systematic review and meta-analysis. JAMA Netw Open 2:e190703PubMedPubMedCentralGoogle Scholar
  31. 31.
    Pivetta E, Goffi A, Nazerian P, Castagno D et al (2019) Study group on lung ultrasound from the molinette and Careggi Hospitals. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomized controlled trial. Eur J Heart Fail 21:754–766PubMedGoogle Scholar
  32. 32.
    Lichtenstein D, Mezière G, Seitz J (2002) The dynamic air-bronchogram: an ultrasound sign of nonretractile alveolar consolidation. Réanimation 11:98Google Scholar
  33. 33.
    Staub LJ, Biscaro RR, Maurici R (2018) Accuracy and applications of lung ultrasound to diagnose ventilator-associated pneumonia: a systematic review. J Intensive Care Med 33:447–455PubMedGoogle Scholar
  34. 34.
    Hew M, Corcoran JP, Harriss EK, Rahman NM, Mallett S (2015) The diagnostic accuracy of chest ultrasound for CT-detected radiographic consolidation in hospitalised adults with acute respiratory failure: a systematic review. BMJ Open 5:e007838PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hu QJ, Shen YC, Jia LQ et al (2014) Diagnostic performance of lung ultrasound in the diagnosis of pneumonia: a bivariate meta-analysis. Int J Clin Exp Med 7:115–121PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chavez MA, Shams N, Ellington LE et al (2014) Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir Res 15:50PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mongodi S, Via G, Girard M et al (2016) Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest 149:969–980PubMedGoogle Scholar
  38. 38.
    Zhou J, Song J, Gong S, Hu W, Wang M, Xiao A, Zhang C, Dong Z (2019) Lung ultrasound combined with procalcitonin for a diagnosis of ventilator- associated pneumonia. Respir Care 64(5):519–527PubMedGoogle Scholar
  39. 39.
    Cha SI, Shin KM, Lee J et al (2012) Clinical relevance of pulmonary infarction in patients with pulmonary embolism. Thromb Res 130:e1–5PubMedGoogle Scholar
  40. 40.
    Kirchner J, Obermann A, Stuckradt S et al (2015) Lung infarction following pulmonary embolism: a comparative study on clinical conditions and CT findings to identify predisposing factors. Rofo 187:440–444PubMedGoogle Scholar
  41. 41.
    Miniati M, Bottai M, Ciccotosto C, Roberto L, Monti S (2015) Predictors of pulmonary infarction. Medicine (Baltimore) 94:e1488Google Scholar
  42. 42.
    Islam M, Filopei J, Frank M et al (2018) Pulmonary infarction secondary to pulmonary embolism: an evolving paradigm. Respirology.  https://doi.org/10.1111/resp.13299 CrossRefPubMedGoogle Scholar
  43. 43.
    Nazerian P, Vanni S, Volpicelli G et al (2014) Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism. Chest 145:950–957PubMedGoogle Scholar
  44. 44.
    Takeda T, Tanigawa K, Tanaka H, Hayashi Y, Goto E, Tanaka K (2003) The assessment of three methods to verify tracheal tube placement in the emergency setting. Resuscitation 56:153–157PubMedGoogle Scholar
  45. 45.
    Gottlieb M, Nakitende D, Sundaram T, Serici A, Shah S, Bailitz J (2018) Comparison of static versus dynamic ultrasound for the detection of endotracheal intubation. West J Emerg Med 19:412–416PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chou EH, Dickman E, Tsou PY et al (2015) Ultrasonography for confirmation of endotracheal tube placement: a systematic review and meta-analysis. Resuscitation 90:97–103PubMedGoogle Scholar
  47. 47.
    Rusu D, Siriopol I et al (2019) Lung ultrasound guided fluid management protocol for the critically-ill patient: study protocol for a multi-center randomized controlled trial. Trials 20:236PubMedPubMedCentralGoogle Scholar
  48. 48.
    Caltabeloti F, Monsel A, Arbelot C et al (2014) Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Crit Care 18:R91PubMedPubMedCentralGoogle Scholar
  49. 49.
    Noble VE, Murray AF, Capp R, Sylvia-Reardon MH, Steele DJR, Liteplo A (2009) Ultrasound assessment for extravascular lung water in patients undergoing hemodialysis. Time course for resolution. Chest 135(6):1433–1439PubMedGoogle Scholar
  50. 50.
    Frasure SE, Matilsky DK, Siadecki SD, Platz E, Saul T, Lewiss RE (2015) Impact of patient positioning on lung ultrasound findings in acute heart failure. Eur Heart J Acute Cardiovasc Care 4(4):326–332PubMedGoogle Scholar
  51. 51.
    Lichtenstein D (2012) Fluid administration limited by lung sonography: the place of lung ultrasound in assessment of acute circulatory failure (the FALLS-protocol). Expert Rev Respir Med 6(2):155–162PubMedGoogle Scholar
  52. 52.
    Ferre A, Guillot M et al (2019) Lung ultrasound allows the diagnosis of weaning-induced pulmonary edema. Intensive Care Med 45(5):601–608PubMedGoogle Scholar
  53. 53.
    Antonio A, Teixeira C, Castro P, Savi A, Maccari J, Oliveira R, Knorst M (2017) Behavior of lung ultrasound findings during spontaneous breathing trial. Rev Bras Ter Intensiva 29(3):279–286PubMedPubMedCentralGoogle Scholar
  54. 54.
    Silva S, Aissa D, Cocquet P, Hoarau L, Ruiz J (2017) Combined thoracic ultrasound assessment during a successful weaning trial predicts postextubation distress. Anesthesiology 127(4):666–674PubMedGoogle Scholar
  55. 55.
    Soummer A, Perbet S, Brisson H et al (2012) Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med 40:2064–2072PubMedGoogle Scholar
  56. 56.
    Stefanidis K, Dimopoulos S et al (2011) Lung sonography and recruitment in patients with early acute respiratory distress syndrome: a pilot study. Crit Care 15:185Google Scholar
  57. 57.
    Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ (2011) Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 183:341–347PubMedGoogle Scholar
  58. 58.
    Tusman G, Acosta CM, Costantini M (2016) Ultrasonography for the assessment of lung recruitment maneuvers. Crit Ultrasound J 8:8PubMedPubMedCentralGoogle Scholar
  59. 59.
    Amato M, Meade M et al (2015) Driving pressure and survival in acute respirtory distress syndrome. N Engl J Med 372:747–755PubMedGoogle Scholar
  60. 60.
    Gerscovich EO, Cronan M, McGahan JP, Jain K, Jones CD, McDonald C (2001) Ultrasonographic evaluation of diaphragmatic motion. J Ultrasound Med 20:597–604PubMedGoogle Scholar
  61. 61.
    Cohn D, Benditt JO, Eveloff S, McCool FD (1997) Diaphragm thickening during inspiration. J Appl Physiol 83:291–296PubMedGoogle Scholar
  62. 62.
    Dube BP, Dres M, Mayaux J, Demiri S, Similowski T, Demoule A (2017) Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax 72:811–818PubMedGoogle Scholar
  63. 63.
    Llamas-Alvarez AM, Tenza-Lozano EM, Latour-Perez J (2017) Diaphragm and lung ultrasound to predict weaning outcome: systematic review and meta-analysis. Chest 152:1140–1150PubMedGoogle Scholar
  64. 64.
    Qian Z, Yang M, Li L, Chen Y (2018) Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: a systematic review and meta-analysis. BMJ Open 8:e021189PubMedPubMedCentralGoogle Scholar
  65. 65.
    Vivier E, Muller M, Putegnat JB et al (2019) Inability of diaphragm ultrasound to predict extubation failure: a multicenter study. Chest 155:1131–1139PubMedGoogle Scholar
  66. 66.
    Demoule A, Molinari N, Jung B et al (2016) Patterns of diaphragm function in critically-ill patients receiving prolonged mechanical ventilation: a prospective longitudinal study. Ann Intensive Care 6:75PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A (2016) Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med 42:1107–1117PubMedGoogle Scholar
  68. 68.
    Mayo PH, Beaulieu Y, Doelken P et al (2009) American college of chest physicians/la société de réanimation de langue française statement on competence in critical care ultrasonography. Chest 135:1050–1060PubMedGoogle Scholar
  69. 69.
    Cholley BP, Mayo PH, Poelaert J et al (2011) International expert statement on training standards for critical care ultrasonography. Intensive Care Med 37:1077–1083Google Scholar
  70. 70.
    Ye X, Xiao H, Chen B, Zhang S (2015) Accuracy of lung ultrasonography versus chest radiography for the diagnosis of adult community-acquired pneumonia: review of the literature and meta-analysis. PLoS ONE 10:e0130066PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Division of Pulmonary Medicine, Albert Einstein College of MedicineMontefiore Medical CenterBronxUSA
  2. 2.Division of Critical Care Medicine, Albert Einstein College of MedicineMontefiore Medical CenterBronxUSA

Personalised recommendations