Advertisement

Lung

, Volume 196, Issue 5, pp 543–552 | Cite as

Tissue and Bronchoalveolar Lavage Biomarkers in Idiopathic Pulmonary Fibrosis Patients on Pirfenidone

  • Nicola Ronan
  • Deirdre M. Bennett
  • Kashif A. Khan
  • Yvonne McCarthy
  • Darren Dahly
  • Louise Bourke
  • Adeline Chelliah
  • Alberto Cavazza
  • Kevin O’Regan
  • Fiachra Moloney
  • Barry J. Plant
  • Michael T. Henry
INTERSTITIAL LUNG DISEASE

Abstract

Background

Pirfenidone is a novel anti-fibrotic agent in idiopathic pulmonary fibrosis with proven clinical benefit. Better human tissue models to demonstrate the immunomodulatory and anti-fibrotic effect of pirfenidone are required.

Objectives

The purpose of the study was to use transbronchial lung cryobiopsy (TBLC), a novel technique which provides substantial tissue samples, and a large panel of biomarkers to temporally assess disease activity and response to pirfenidone therapy.

Methods

Thirteen patients with confirmed idiopathic pulmonary fibrosis (IPF) underwent full physiological and radiological assessment at diagnosis and after 6-month pirfenidone therapy. They underwent assessment for a wide range of potential serum and bronchoalveolar lavage biomarkers of disease activity. Finally, they underwent TBLC before and after treatment. Tissue samples were assessed for numbers of fibroblast foci, for Ki-67, a marker of tissue proliferation and caspase-3, a marker of tissue apoptosis.

Results

All patients completed treatment and investigations without significant incident. There was no significant fall in number of fibroblast foci per unit tissue volume after treatment (pre-treatment: 0.14/mm2 vs. post-treatment 0.08/mm2, p = 0.1). Likewise, there was no significant change in other markers of tissue proliferation, Ki-67 or Caspase-3 with pirfenidone treatment. We found an increase in three bronchoalveolar lavage angiogenesis cytokines, Placental Growth Factor, Vascular Endothelial Growth Factor-A, and basic Fibroblast Growth Factor, two anti-inflammatory cytokines Interleukin-10 and Interleukin-4 and Surfactant Protein-D.

Conclusions

TBLC offers a unique opportunity to potentially assess the course of disease activity and response to novel anti-fibrotic activity in IPF.

Keywords

Pirfenidone Idiopathic pulmonary fibrosis Transbronchial lung cryobiopsy 

Notes

Funding

This project was part funded by an unrestricted educational grant from Roche Pharmaceuticals, Basel, Switzerland.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

408_2018_140_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 KB)

References

  1. 1.
    Katzenstein AL, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301–1315CrossRefGoogle Scholar
  2. 2.
    Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345:517–525CrossRefGoogle Scholar
  3. 3.
    Jenkins RG, Simpson JK, Saini G, Bentley JH, Russell AM, Braybrooke R, Molyneaux PL, McKeever TM, Wells AU, Flynn A, Hubbard RB, Leeming DJ, Marshall RP, Karsdal MA, Lukey PT, Maher TM (2015) Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med 3:462–472.  https://doi.org/10.1016/S2213-2600%5B15%5D00048-X CrossRefPubMedGoogle Scholar
  4. 4.
    Henry MT, McMahon K, Mackeral AJ, Prikk K, Sorsa T, Maisi P, Sepper R, FitzGerald MX, O’Connor CM (2002) Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur Respir J 20:1220–1227CrossRefGoogle Scholar
  5. 5.
    Kennedy B, Branagan P, Moloney F, Haroon M, O’Connor TM, O’Regan K, Harney S, Henry MT (2015) Biomarkers to predict lung function decline in scleroderma lung disease or idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffus Lung Dis 32:228–236Google Scholar
  6. 6.
    Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DH, Inoue Y, Kim DS, Kolb M, Nicholson AG, Noble PW, Selman M, Taniguchi H, Brun M, Le Maulf F, Girard M, Stowasser S, Schlenker-Herceg R, Disse B, Collard HR for the IMPULSIS Trial Investigators (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082CrossRefGoogle Scholar
  7. 7.
    Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, Taguchi Y, Tagahashi Y, Nakata K, Sato A, Takeuchi M, Raghu G, Kudoh S, the Pirfenidone Clinical Study Group in Japan (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 35:821–829CrossRefGoogle Scholar
  8. 8.
    Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE, Lancaster L, Sahn SA, Swarcberg J, Valeyre D, Du Bois RM for the CAPACITY study group (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377:1760–1769CrossRefGoogle Scholar
  9. 9.
    Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, for the ASCEND Study Group (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092CrossRefGoogle Scholar
  10. 10.
    Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K (2011) Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev 20(120):85–97CrossRefGoogle Scholar
  11. 11.
    Bagnato G, Harari S (2015) Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev 24:102–114CrossRefGoogle Scholar
  12. 12.
    Tomassetti S, Wells AU, Costabel U, Cavazza A, Colby TV, Rossi G, Sverzellati N, Carloni A, Carretta E, Buccioli M, Tantalocca P, Ravaglia C, Gurioli C, Dubini C, Piciucchi S, Ryu JH, Poletti V (2016) Bronchoscopic lung cryobiopsy increases diagnostic confidence in the multidisciplinary diagnosis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 193(7):745–752.  https://doi.org/10.1164/rccm.201504-0711OC CrossRefPubMedGoogle Scholar
  13. 13.
    Babiak A, Hetzel J, Krishna G, Fritz P, Moeller P, Balli T, Hetzel M (2009) Transbronchial cryobiopsy: a new tool for lung biopsies. Respiration 78:203–208CrossRefGoogle Scholar
  14. 14.
    Casoni GL, Tomassetti S, Cavazza A, Colby TV, Dubini A, Ryu JH, Caretta E, Tantalocco P, Piciucchi S, Ravaglia C, Gurioli C, Romagnoli M, Gurioli C, Chilosi M, Poletti V (2014) Transbronchial lung cryobiopsy in the diagnosis of fibrotic interstitial lung diseases. PLoS ONE 9(2):e86716CrossRefGoogle Scholar
  15. 15.
    Colby TV, Tomassetti S, Cavazza A, Dubini A, Poletti V (2017) Transbronchial cryobiopsy in diffuse lung disease: update for the pathologist. Arch Pathol Lab Med 141(7):891–900CrossRefGoogle Scholar
  16. 16.
    Edey AJ, Devaraj AA, Barker RP, Nicholson AG, Wells AU, Hansell DM (2011) Fibrotic idiopathic interstitial pneumonias HRCT findings that predict mortality. Eur Radiol 21(8):1586–1593CrossRefGoogle Scholar
  17. 17.
    Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB, Dibben O, Margolick JB, Bream JH, Sambrano E, Martinez-Mazo O, Sinclair E, Borrow P, Landay AL, Rinaldo CR, Norris PJ (2011) Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol 18(8):1229–1242CrossRefGoogle Scholar
  18. 18.
    Chowdhury F, Williams A, Johnson P (2009) Validation and comparison of two multiplex technologies, Luminex® and Mesoscale Discovery, for human cytokine profiling. J Immunol Methods 340(1):55–64.CrossRefGoogle Scholar
  19. 19.
    Schmidt K, Martinez-Gamboa L, Meier S, Witt C, Meisel C, Hanitsch LG, Becker MO, Huscher D, Burmester GR, Riemekasten G (2009) Bronchoalveolar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res Ther 11:R111CrossRefGoogle Scholar
  20. 20.
    Pajares V, Puzo C, Castillo D, Lerma E, Montero MA, Ramos-Barbo´ D, Amor-Carro O, Gil de Bernabe´ A, Franquet T, Plaza V, Hetzel J, Sanchis J, Torrego A (2014) Diagnostic yield of transbronchial cryobiopsy in interstitial lung disease: a randomized trial. Respirology 19:900–906CrossRefGoogle Scholar
  21. 21.
    Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D; ATS/ERS Committee on Idiopathic Interstitial Pneumonias (2013) An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748CrossRefGoogle Scholar
  22. 22.
    Lomas NJ, Watts KL, Akram KM, Forsyth NR, Spiteri MA (2012) Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers. Int J Clin Exp Pathol 5(1):58–71PubMedPubMedCentralGoogle Scholar
  23. 23.
    Li J, Shi Y, Toga AW (2015) Controlling false discovery rate in signal space for transformation-invariant thresholding of statistical maps. In: Information processing in medical imaging: proceedings of the conference. Lecture notes in computer science, vol 9123, pp 125–136.  https://doi.org/10.1007/978-3-319-19992-4_10 Google Scholar
  24. 24.
    El-Zammer O, Rosenbaum P, Katzenstein AL (2009) Proliferative activity in fibrosing lung diseases: a comparative study of Ki-67 immunoreactivity in diffuse alveolar damage, bronchiolitis-organizing pneumonia, and usual interstitial pneumonia. Hum Pathol 40:1182–1188CrossRefGoogle Scholar
  25. 25.
    Enomoto N, Suda T, Kato M, Kaida Y, Nakamura Y, Imokawa S, Ida M, Chida K (2006) Quantitative analysis of fibroblastic foci in usual interstitial pneumonia. Chest 130:22–29CrossRefGoogle Scholar
  26. 26.
    Flaherty KR, Colby TV, Travis WD, Toews GB, Mumford J, Murray S, Thannickal VJ, Kazarooni EA, Gross BH, Lynch JP, Martinez FJ (2003) Fibroblastic foci in usual interstitial pneumonia: idiopathic versus collagen vascular disease. Am J Respir Crit Care Med 167:1410–1415CrossRefGoogle Scholar
  27. 27.
    Hutchinson JP, Fogarty AW, McKeever TM, Hubbard RB (2016) In-hospital mortality after surgical lung biopsy for interstitial lung biopsy in the United States, 2000–2011. Am J Respir Crit Care Med 93:1161–1167CrossRefGoogle Scholar
  28. 28.
    Jones MG, Fabre A, Schneider P, Cinetto F, Sgalla G, Mavrogordato M, Jogai S, Alzetani A, Marshall BG, O’Reilly KMA, Warner JA, Lackie PM, Davies DE, Hansell DM, Nicholson AG, Sinclair I, Brown KK, Richeldi L (2016) Three-dimensional characterisation of fibroblast foci in idiopathic pulmonary fibrosis. JCI Insight 1(5):e86375.  https://doi.org/10.1172/jci.insight.86375 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Saito S, Murase K (2012) Detection and early phase assessment of radiation induced lung injury in mice using Micro-CT. PLoS ONE 7(9):e45960.  https://doi.org/10.1371/journal.pone.0045960 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, Lang G, Fink L, Bohle RM, Seeger W, Weaver TE, Guenther A (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178:838–846CrossRefGoogle Scholar
  31. 31.
    Kuwano K, Hagimoto N, Nakanishi Y (2004) The role of apoptosis in pulmonary fibrosis. Histol Histopathol 19:867–881PubMedGoogle Scholar
  32. 32.
    Kuwano K, Kunitake R, Maeyama T, Hagimoto N, Kawasaki M, Matsuba T, Yoshimi M, Inoshima I, Yoshida K, Hara N (2001) Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 280:L316–L325CrossRefGoogle Scholar
  33. 33.
    Shihab F, Bennett WM, Hong Y, Andoh TF (2005) Effect of pirfenidone on apoptosis-regulatory genes in chronic cyclosporine nephrotoxicity. Transplantation 79:419–426CrossRefGoogle Scholar
  34. 34.
    Pforte A, Gerth C, Voss A, Beer B, Haussinger K, Jutting U, Burger G, Zeigler-Heitbrock HW (1993) Proliferating alveolar macrophages in BAL and lung function changes in interstitial lung disease. Eur Respir J 6:951–955PubMedGoogle Scholar
  35. 35.
    Maher T (2014) Disease stratification in idiopathic pulmonary fibrosis: the dawn of a new era? Eur Respir J 43:1233–1236CrossRefGoogle Scholar
  36. 36.
    Bagnato G, Harari S (2015) Cellular mechanisms in the pathogenesis of interstitial lung diseases. Eur Respir Rev 24:102–114CrossRefGoogle Scholar
  37. 37.
    Koyama S, Sato E, Haniuda M, Numanami H, Nagai S, Izumi T (2002) Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med 166:382–385CrossRefGoogle Scholar
  38. 38.
    Tsao P, Su Y, Hung L, Huang P, Chien C, Lai YL, Lee CN, Chen CA, Cheng WF, Wei SC, Yu CJ, Hsieh FJ, Hsu SM (2004) Overexpression of placental growth factor contributes to the pathogenesis of pulmonary emphysema. Am J Respir Crit Care Med 169:505–511CrossRefGoogle Scholar
  39. 39.
    Inoue Y, King TE, Barker E, Daniloff E, Newman LS (2002) Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. Am J Respir Crit Care Med 166:765–773CrossRefGoogle Scholar
  40. 40.
    Greene KE, King TE Jr, Kuroki Y, Bucher-Bartelson B, Hunninghake GW, Newman LS, Nagae H, Mason RJ (2002) Serum surfactant proteins-A and –D as biomarkers in idiopathic pulmonary fibrosis. Eur Respir J 19:439–446CrossRefGoogle Scholar
  41. 41.
    McCormack FX, King TE Jr, Bucher BL, Mielsen L, Mason RJ, McCormac FX (1995) Surfactant protein A predicts survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 152:751–759CrossRefGoogle Scholar
  42. 42.
    Kucejko W, Chyczewska E, Naumnik W, Ossoliñska M (2009) Concentration of surfactant protein D, Clara cell protein CC-16 and IL-10 in bronchoalveolar lavage (BAL) in patients with sarcoidosis, hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Folia Histochem Cytobiol 47:225–230CrossRefGoogle Scholar
  43. 43.
    Martinez JA, King TE Jr, Browne K, Jennings CA, Borish L, Mortenson RL, Khan TZ, Bost TW, Riches DW (1997) Increased expression of interleukin-10 gene by alveolar macrophages in interstitial lung disease. Am J Physiol 273:L676–L683CrossRefGoogle Scholar
  44. 44.
    Bergeron A, Soler P, Kambouchner M, Loiseau P, Milleron B, Valeyre D, Hance AJ, Tazi A (2003) Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF-β and IL-10. Eur Respir J 22:69–76CrossRefGoogle Scholar
  45. 45.
    Nakazato H, Oku H, Yamane S, Tsuruta Y, Suzuki R (2002) A novel anti-fibrotic agent pirfenidone suppresses tumour necrosis factor-alpha at the translational level. Eur J Pharmacol 446:177–185CrossRefGoogle Scholar
  46. 46.
    Arai T, Abe K, Matsuoka H, Yoshida M, Mori M, Goya S, Kida H, Nishino K, Osaki T, Tachibana L, Kaneda Y, Hayashi S (2000) Introduction of the interleukin-10 gene into mice inhibited bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 278:L914–L922CrossRefGoogle Scholar
  47. 47.
    Navarro-Partida J, Martinez-Riso A, Gonzalez-Cuevas J, Arrevillaga-Bosoni G, Ortiz-Navarrete V, Armendariz-Borunda J (2012) Pirfenidone restricts Th2 differentiation in vitro and limits Th2 response in experimental liver fibrosis. Eur J Pharmacol 678:71–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nicola Ronan
    • 1
    • 2
  • Deirdre M. Bennett
    • 3
  • Kashif A. Khan
    • 1
    • 2
  • Yvonne McCarthy
    • 1
  • Darren Dahly
    • 1
  • Louise Bourke
    • 4
  • Adeline Chelliah
    • 4
  • Alberto Cavazza
    • 5
  • Kevin O’Regan
    • 6
  • Fiachra Moloney
    • 6
  • Barry J. Plant
    • 1
    • 2
  • Michael T. Henry
    • 1
    • 2
  1. 1.Health Research Board Clinical Research FacilityUniversity College CorkCorkIreland
  2. 2.Department of Respiratory MedicineCork University HospitalCorkIreland
  3. 3.Medical Education UnitUniversity College CorkCorkIreland
  4. 4.Department of HistopathologyCork University HospitalCorkIreland
  5. 5.Department of Pathology, Arcispedale S Maria NuovaIstituti di Ricovero e Cura a Carattere ScientificoReggio EmiliaItaly
  6. 6.Department of RadiologyCork University HospitalCorkIreland

Personalised recommendations