Advertisement

Lung

, Volume 196, Issue 5, pp 531–541 | Cite as

Dasatinib Suppresses TGFβ-Mediated Epithelial–Mesenchymal Transition in Alveolar Epithelial Cells and Inhibits Pulmonary Fibrosis

  • Ryota Kanemaru
  • Fumiyuki Takahashi
  • Motoyasu Kato
  • Yoichiro Mitsuishi
  • Ken Tajima
  • Hiroaki Ihara
  • Moulid Hidayat
  • Aditya Wirawan
  • Yoshika Koinuma
  • Daisuke Hayakawa
  • Shigehiro Yagishita
  • Ryo Ko
  • Tadashi Sato
  • Norihiro Harada
  • Yuzo Kodama
  • Fariz Nurwidya
  • Shinichi Sasaki
  • Shin-ichiro Niwa
  • Kazuhisa Takahashi
Interstitial Lung Disease
  • 283 Downloads

Abstract

Purpose

Transforming growth factor β (TGFβ)-mediated epithelial–mesenchymal transition (EMT) of alveolar epithelial cells contributes to pulmonary fibrosis. Dasatinib (DAS), a potent and broad-spectrum tyrosine kinase inhibitor, has been widely studied as an anti-cancer agent. However, the therapeutic application of DAS for pulmonary fibrosis has not been clarified. Our purpose here is to investigate the effect of DAS on TGFβ1-induced EMT in human alveolar and bronchial epithelial cells in vitro and to evaluate the efficacy of DAS on lung fibrosis in vivo.

Methods

TGFβ1-stimulated human alveolar epithelial (A549) and bronchial epithelial (BEAS-2B) cells were treated with or without DAS in vitro. Murine pulmonary fibrosis model was generated by injection of bleomycin (BLM).

Results

A549 and BEAS-2B cells exposed to TGFβ1 underwent EMT, as indicated by downregulation of epithelial protein E-cadherin and induction of the mesenchymal proteins, fibronectin and type I and type IV collagen. These effects were dramatically suppressed by DAS treatment, which also prevented Smad2 and Smad3 phosphorylation. DAS inhibited TGFβ1-induced cell motility and migration. Furthermore, DAS administration significantly attenuated lung fibrosis in mice by histological analysis. Treatment with DAS also significantly reduced the levels of collagen and fibronectin and phosphorylation of Smad2 in the lung tissues of the murine model.

Conclusions

These findings suggest that DAS inhibited TGFβ-mediated EMT of alveolar and bronchial epithelial cells and attenuated BLM-induced lung fibrosis in mice by suppressing the TGFβ/Smad pathway. DAS may be a promising and novel anti-fibrotic agent for preventing lung fibrosis.

Keywords

Dasatinib Pulmonary fibrosis Epithelial mesenchymal transition TGFβ 

Abbreviations

DAS

Dasatinib

IPF

Idiopathic pulmonary fibrosis

ECM

Extracellular matrix

TGF

Transforming growth factor

EMT

Epithelial mesenchymal transition

BLM

Bleomycin

HE

Hematoxylin-Eosin

MT

Masson-Trichrome

qPCR

Quantitative polymerase chain reaction

Notes

Acknowledgements

We appreciate the advice and expertise of Ms. Etsuko Kobayashi, Juntendo University Graduate School of Medicine.

Funding

This study was supported by JSPS KAKENHI Grant Number 26461200. This study was also funded by Research Grants from the Satoshi Okamoto Memorial Foundation of Pulmonary Fibrosis, Japan Research Foundation for Clinical Pharmacology, Mochida Memorial Foundation for Medical and Pharmaceutical Research, and Yokoyama Foundation for Clinical Pharmacology.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest for this work.

Ethical Approval

All animal experiments were carried out in accordance with the Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology (Notice No. 71, 2006) and approved by the Committee for Animal Experimentation of Juntendo University with the Approval No. 290031.

Research Involving Human Participants

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

408_2018_134_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2433 KB)

References

  1. 1.
    Flaherty KR, Colby TV, Travis WD, Toews GB, Mumford J, Murray S et al (2003) Fibroblastic foci in usual interstitial pneumonia: idiopathic versus collagen vascular disease. Am J Respir Crit Care Med 167:1410–1415CrossRefPubMedGoogle Scholar
  2. 2.
    Kolosova I, Nethery D, Kern JA (2011) Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J Cell Physiol 226:1248–1254CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chapman HA (2011) Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 73:413–435CrossRefPubMedGoogle Scholar
  5. 5.
    King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092CrossRefPubMedGoogle Scholar
  6. 6.
    Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U et al. (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082CrossRefPubMedGoogle Scholar
  7. 7.
    Xi Y, Tan K, Brumwell AN, Chen SC, Kim YH, Kim TJ et al (2014) Inhibition of epithelial-to-mesenchymal transition and pulmonary fibrosis by methacycline. Am J Respir Cell Mol Biol 50:51–60PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401CrossRefPubMedGoogle Scholar
  9. 9.
    Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7:345–356CrossRefPubMedGoogle Scholar
  10. 10.
    Rabenau KE, Dolan M, Yohe S, Ustun C (2014) Effectiveness of dasatinib in accelerated-phase chronic myeloid leukemia with p190 BCR-ABL1 and a second Philadelphia chromosome. Cancer Genet 207:109–110CrossRefPubMedGoogle Scholar
  11. 11.
    Finn RS, Bengala C, Ibrahim N, Roche H, Sparano J, Strauss LC et al (2011) Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clin Cancer Res 17:6905–6913CrossRefPubMedGoogle Scholar
  12. 12.
    Yilmaz O, Oztay F, Kayalar O (2015) Dasatinib attenuated bleomycin-induced pulmonary fibrosis in mice. Growth Factors 33:366–375CrossRefPubMedGoogle Scholar
  13. 13.
    Abdalla M, Thompson L, Gurley E, Burke S, Ujjin J, Newsome R et al (2015) Dasatinib inhibits TGFbeta-induced myofibroblast differentiation through Src-SRF Pathway. Eur J Pharmacol 769:134–142CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Minakata K, Takahashi F, Nara T, Hashimoto M, Tajima K, Murakami A et al (2012) Hypoxia induces gefitinib resistance in non-small-cell lung cancer with both mutant and wild-type epidermal growth factor receptors. Cancer Sci 103:1946–1954CrossRefPubMedGoogle Scholar
  15. 15.
    Oku H, Shimizu T, Kawabata T, Nagira M, Hikita I, Ueyama A et al (2008) Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol 590:400–408CrossRefPubMedGoogle Scholar
  16. 16.
    Enomoto N, Suda T, Kato M, Kaida Y, Nakamura Y, Imokawa S et al (2006) Quantitative analysis of fibroblastic foci in usual interstitial pneumonia. Chest 130:22–29CrossRefPubMedGoogle Scholar
  17. 17.
    Ashcroft T, Simpson JM, Timbrell V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41:467–470CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Takahashi F, Takahashi K, Okazaki T, Maeda K, Ienaga H, Maeda M et al (2001) Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 24:264–271CrossRefPubMedGoogle Scholar
  19. 19.
    Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P (2006) Dasatinib. Nat Rev Drug Discov 5:717–718CrossRefPubMedGoogle Scholar
  20. 20.
    Montero JC, Seoane S, Ocana A, Pandiella A (2011) Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 17:5546–5552CrossRefPubMedGoogle Scholar
  21. 21.
    Hu M, Che P, Han X, Cai GQ, Liu G, Antony V et al (2014) Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther 351:87–95CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chaudhary NI, Roth GJ, Hilberg F, Muller-Quernheim J, Prasse A, Zissel G et al (2007) Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur Respir J 29:976–985CrossRefPubMedGoogle Scholar
  23. 23.
    Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F et al (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cruz FF, Horta LF, Maia Lde A, Lopes-Pacheco M, da Silva AB, Morales MM et al (2016) Dasatinib reduces lung inflammation and fibrosis in acute experimental silicosis. PLoS ONE 11:e0147005CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Harada T, Watanabe K, Nabeshima K, Hamasaki M, Iwasaki H (2013) Prognostic significance of fibroblastic foci in usual interstitial pneumonia and non-specific interstitial pneumonia. Respirology 18:278–283CrossRefPubMedGoogle Scholar
  26. 26.
    Lomas NJ, Watts KL, Akram KM, Forsyth NR, Spiteri MA (2012) Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers. Int J Clin Exp Pathol 5:58–71PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bartscht T, Rosien B, Rades D, Kaufmann R, Biersack H, Lehnert H et al (2015) Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of Smad signalling: implications for in vivo mode of action. Mol Cancer 14:199CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chung JH, Rho JK, Xu X, Lee JS, Yoon HI, Lee CT et al (2011) Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer 73:176–182CrossRefPubMedGoogle Scholar
  29. 29.
    Wilson C, Nicholes K, Bustos D, Lin E, Song Q, Stephan JP et al (2014) Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget 5:7328–7341CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sesumi Y, Suda K, Mizuuchi H, Kobayashi Y, Sato K, Chiba M et al (2017) Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer 104:85–90CrossRefPubMedGoogle Scholar
  31. 31.
    Mohammadalipour A, Karimi J, Khodadadi I, Solgi G, Hashemnia M, Sheikh N et al (2017) Dasatinib prevent hepatic fibrosis induced by carbon tetrachloride (CCl4) via anti-inflammatory and antioxidant mechanism. Immunopharmacol Immunotoxicol 39:19–27CrossRefPubMedGoogle Scholar
  32. 32.
    Balasubramanian S, Pleasant DL, Kasiganesan H, Quinones L, Zhang Y, Sundararaj KP et al (2015) Dasatinib attenuates pressure overload induced cardiac fibrosis in a murine transverse aortic constriction model. PLoS ONE 10:e0140273CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bergeron A, Rea D, Levy V, Picard C, Meignin V, Tamburini J et al (2007) Lung abnormalities after dasatinib treatment for chronic myeloid leukemia: a case series. Am J Respir Crit Care Med 176:814–818CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ryota Kanemaru
    • 1
    • 2
  • Fumiyuki Takahashi
    • 1
    • 2
  • Motoyasu Kato
    • 1
    • 2
  • Yoichiro Mitsuishi
    • 1
    • 2
  • Ken Tajima
    • 1
    • 2
  • Hiroaki Ihara
    • 1
    • 2
  • Moulid Hidayat
    • 1
    • 2
  • Aditya Wirawan
    • 1
    • 2
  • Yoshika Koinuma
    • 1
    • 2
  • Daisuke Hayakawa
    • 1
    • 2
  • Shigehiro Yagishita
    • 1
    • 2
  • Ryo Ko
    • 1
    • 2
  • Tadashi Sato
    • 1
    • 2
  • Norihiro Harada
    • 1
    • 2
  • Yuzo Kodama
    • 1
    • 2
  • Fariz Nurwidya
    • 1
    • 2
  • Shinichi Sasaki
    • 1
    • 2
  • Shin-ichiro Niwa
    • 4
  • Kazuhisa Takahashi
    • 1
    • 2
    • 3
  1. 1.Department of Respiratory MedicineJuntendo University, Graduate School of MedicineTokyoJapan
  2. 2.Research Institute for Diseases of Old AgesJuntendo University, Graduate School of MedicineTokyoJapan
  3. 3.Leading Center for the Development and Research of Cancer MedicineJuntendo University, Graduate School of MedicineTokyoJapan
  4. 4.Link Genomics, IncorporatedTokyoJapan

Personalised recommendations