The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid

  • Laura KranasterEmail author
  • Carolin Hoyer
  • Sonani Mindt
  • Michael Neumaier
  • Norbert Müller
  • Peter Zill
  • Markus J. Schwarz
  • Natalie Moll
  • Beat Lutz
  • Laura Bindila
  • Inga Zerr
  • Matthias Schmitz
  • Kaj Blennow
  • Henrik Zetterberg
  • Dieter Haffner
  • Maren Leifheit-Nestler
  • Cagakan Ozbalci
  • Alexander Sartorius
Original Paper


For patients with depression treated with electroconvulsive therapy (ECT), the novel seizure quality index (SQI) can predict the risk of non-response (and non-remission)—as early as after the second ECT session—based the extent of several ictal parameters of the seizure. We aim to test several CSF markers on their ability to predict the degree of seizure quality, measured by the SQI to identify possible factors, that could explain some variability of the seizure quality. Baseline CSF levels of metabolites from the kynurenine pathway, markers of neurodegeneration (tau proteins, β-amyloids and neurogranin), elements of the innate immune system, endocannabinoids, sphingolipids, neurotrophic factors (VEGF) and Klotho were measured before ECT in patients with depression (n = 12) to identify possible correlations with the SQI by Pearson's partial correlation. Negative, linear relationships with the SQI for response were observed for CSF levels of T-tau (rpartial = − 0.69, p = 0.019), phosphatidylcholines (rpartial = − 0.52, p = 0.038) and IL-8 (rpartial = − 0.67, p = 0.047). Regarding the SQI for remission, a negative, linear relationship was noted with CSF levels of the endocannabinoid AEA (rpartial = − 0.70, p = 0.024) and CD163 (rpartial = − 0.68, p = 0.029). In sum, CSF Markers for the innate immune system, for neurodegeneration and from lipids were found to be associated with the SQI for response and remission after adjusting for age. Consistently, higher CSF levels of the markers were always associated with lower seizure quality. Based on these results, further research regarding the mechanism of seizure quality in ECT is suggested.


Electroconvulsive therapy Depression Outcome Prediction Cerebrospinal fluid 



LK received support by the German Research Foundation (DFG-Grant no. KR 4689/3-1).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Axelsson J, Moller HJ, Witasp A, Qureshi AR, Carrero JJ, Heimburger O, Barany P, Alvestrand A, Lindholm B, Moestrup SK, Stenvinkel P (2006) Changes in fat mass correlate with changes in soluble scd163, a marker of mature macrophages, in patients with ckd. Am J Kidney Dis 48:916–925PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Biedermann SV, Weber-Fahr W, Demirakca T, Tunc-Skarka N, Hoerst M, Henn F, Sartorius A, Ende G (2015) 31p RINEPT MRSI and VBM reveal alterations in brain aging associated with major depression. Magn Reson Med 73:1390–1400PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bindila L, Lutz B (2016) Extraction and simultaneous quantification of endocannabinoids and endocannabinoid-like lipids in biological tissues. Methods Mol Biol 1412:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc'h P, Kouassi Nzoughet J, Lenaers G, Andres CR, Simard G, Corcia P, Reynier P (2017) Lipidomics reveals cerebrospinal-fluid signatures of als. Sci Rep 7:17652PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bumb JM, Aksay SS, Janke C, Kranaster L, Geisel O, Gass P, Hellweg R, Sartorius A (2015) Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients. Eur Arch Psychiatry Clin Neurosci 265:227–232PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bundy BD, Hewer W, Andres FJ, Gass P, Sartorius A (2010) Influence of anesthetic drugs and concurrent psychiatric medication on seizure adequacy during electroconvulsive therapy. J Clin Psychiatry 71:775–777PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Chi SH, Jeong HG, Lee S, Oh SY, Kim SH (2017) Effects of psychotropic drugs on seizure threshold during electroconvulsive therapy. Psychiatry Investig 14:647–655PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cuellar AK, Johnson SL, Winters R (2005) Distinctions between bipolar and unipolar depression. Clin Psychol Rev 25:307–339PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di Filippo M, Pini LA, Pelliccioli GP, Calabresi P, Sarchielli P (2008) Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:1224–1229PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Duman RS, Vaidya VA (1998) Molecular and cellular actions of chronic electroconvulsive seizures. J ECT 14:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Folkerts H (1996) The ictal electroencephalogram as a marker for the efficacy of electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 246:155–164PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gesell FK, Zoerner AA, Brauer C, Engeli S, Tsikas D, Tipold A (2013) Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. BMC Vet Res 9:262PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Giovannelli A, Limatola C, Ragozzino D, Mileo AM, Ruggieri A, Ciotti MT, Mercanti D, Santoni A, Eusebi F (1998) Cxc chemokines interleukin-8 (il-8) and growth-related gene product alpha (groalpha) modulate purkinje neuron activity in mouse cerebellum. J Neuroimmunol 92:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hoyer C, Kranaster L, Janke C, Sartorius A (2014) Impact of the anesthetic agents ketamine, etomidate, thiopental, and propofol on seizure parameters and seizure quality in electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 264:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hoyer C, Sartorius A, Aksay SS, Bumb JM, Janke C, Thiel M, Haffner D, Leifheit-Nestler M, Kranaster L (2018) Electroconvulsive therapy enhances the anti-ageing hormone klotho in the cerebrospinal fluid of geriatric patients with major depression. Eur Neuropsychopharmacol 28:428–435PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, Schloss P, Sartorius A, Meyer-Lindenberg A, Gass P (2013) Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS ONE 8:e69869PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Isgren A, Jakobsson J, Palsson E, Ekman CJ, Johansson AG, Sellgren C, Blennow K, Zetterberg H, Landen M (2015) Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment. Brain Behav Immun 43:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kranaster L, Aksay SS, Bumb JM, Hoyer C, Jennen-Steinmetz C, Sartorius A (2018) A novel seizure quality index based on ictal parameters for optimizing clinical decision making in electroconvulsive therapy. Part 1: Development. Eur Arch Psychiatry Clin NeurosciGoogle Scholar
  20. 20.
    Kranaster L, Aksay SS, Bumb JM, Janke C, Alonso A, Hoyer C, Zerr I, Schmitz M, Hausner L, Frolich L, Sartorius A (2016) Electroconvulsive therapy selectively enhances amyloid beta 1–42 in the cerebrospinal fluid of patients with major depression: a prospective pilot study. Eur Neuropsychopharmacol 26:1877–1884PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kranaster L, Blennow K, Zetterberg H, Sartorius A (2017) Electroconvulsive therapy does not alter the synaptic protein neurogranin in the cerebrospinal fluid of patients with major depression. J Neural Transm (Vienna) 124:1641–1645CrossRefGoogle Scholar
  22. 22.
    Kranaster L, Blennow K, Zetterberg H, Sartorius A (2019) Reduced vascular endothelial growth factor levels in the cerebrospinal fluid in patients with treatment resistant major depression and the effects of electroconvulsive therapy—a pilot study. J Affect Disord 253:449–453PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kranaster L, Hellweg R, Sartorius A (2019) Association between the novel seizure quality index for the outcome prediction in electroconvulsive therapy and brain-derived neurotrophic factor serum levels. Neurosci Lett 704:164–168PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Leweke FM, Janke C, Thiel M, Lutz B, Bindila L, Sartorius A (2017) Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: a preliminary prospective study. Eur Arch Psychiatry Clin NeurosciGoogle Scholar
  25. 25.
    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Leweke FM, Janke C, Thiel M, Lutz B, Bindila L, Sartorius A (2017) Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: A preliminary prospective study. Eur Arch Psychiatry Clin Neurosci 267:781–786PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Moll N, Lutz B, Bindila L, Zerr I, Schmitz M, Blennow K, Zetterberg H, Haffner D, Leifheit-Nestler M, Ozbalci C, Janke C, Thiel M, Sartorius A (2019) Biomarkers for antidepressant efficacy of electroconvulsive therapy: an exploratory cerebrospinal fluid study. Neuropsychobiology 77:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Sartorius A (2017) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 1–11Google Scholar
  28. 28.
    Kranaster L, Hoyer C, Aksay SS, Bumb JM, Muller N, Zill P, Schwarz MJ, Sartorius A (2018) Antidepressant efficacy of electroconvulsive therapy is associated with a reduction of the innate cellular immune activity in the cerebrospinal fluid in patients with depression. World J Biol Psychiatry 19:379–389PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kranaster L, Jennen-Steinmetz C, Sartorius A (2018) A novel seizure quality index based on ictal parameters for optimizing clinical decision-making in electroconvulsive therapy. Part 2: Validation. Eur Arch Psychiatry Clin NeurosciGoogle Scholar
  30. 30.
    Kranaster L, Kammerer-Ciernioch J, Hoyer C, Sartorius A (2011) Clinically favourable effects of ketamine as an anaesthetic for electroconvulsive therapy: a retrospective study. Eur Arch Psychiatry Clin Neurosci 261:575–582PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Krystal AD (1998) The clinical utility of ictal eeg seizure adequacy models. Psychiatr Ann 28:30–35CrossRefGoogle Scholar
  32. 32.
    Krystal AD, Weiner RD, Coffey CE (1995) The ictal eeg as a marker of adequate stimulus intensity with unilateral ect. J Neuropsychiatry Clin Neurosci 7:295–303PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Ohrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthon L, Hansson O, Andreasson U, Teunissen CE, Scheltens P, Van der Flier WM, Zetterberg H, Portelius E, Blennow K (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal alzheimer's disease. Alzheimer's Dementia J Alzheimer's Assoc 11:1180–1190CrossRefGoogle Scholar
  34. 34.
    Larsen WA, McCleary SJ (1972) The use of partial residual plots in regression analysis. Technometrics 14:781–790CrossRefGoogle Scholar
  35. 35.
    Mindt S, Neumaier M, Hoyer C, Sartorius A, Kranaster L (2019) Cytokine-mediated cellular immune activation in electroconvulsive therapy: a csf study in patients with treatment-resistant depression. World J Biol Psychiatry 1–9Google Scholar
  36. 36.
    Minelli A, Abate M, Zampieri E, Gainelli G, Trabucchi L, Segala M, Sartori R, Gennarelli M, Conca A, Bortolomasi M (2016) Seizure adequacy markers and the prediction of electroconvulsive therapy response. J ECT 32:88–92PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Moller HJ (2012) Soluble cd163. Scand J Clin Lab Invest 72:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. Xxii Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176PubMedPubMedCentralGoogle Scholar
  39. 39.
    Nibuya M, Morinobu S, Duman RS (1995) Regulation of bdnf and trkb mrna in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nierenberg AA, DeCecco LM (2001) Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: A focus on treatment-resistant depression. J Clin Psychiatry 62(Suppl 16):5–9PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ogden TL (2010) Handling results below the level of detection. Ann Occup Hyg 54:255–256PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ozbalci C, Sachsenheimer T, Brugger B (2013) Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol Biol 1033:3–20PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Perera TD, Luber B, Nobler MS, Prudic J, Anderson C, Sackeim HA (2004) Seizure expression during electroconvulsive therapy: relationships with clinical outcome and cognitive side effects. Neuropsychopharmacology 29:813–825PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Petrides G, Braga RJ, Fink M, Mueller M, Knapp R, Husain M, Rummans T, Bailine S, Malur C, O'Connor K, Kellner C, Group C (2009) Seizure threshold in a large sample: Implications for stimulus dosing strategies in bilateral electroconvulsive therapy: a report from core. J ECT 25:232–237CrossRefGoogle Scholar
  45. 45.
    Petrides G, Fink M (1996) The "half-age" stimulation strategy for ect dosing. Convuls Ther 12:138–146PubMedPubMedCentralGoogle Scholar
  46. 46.
    Posse de Chaves E, Vance DE, Campenot RB, Vance JE (1995) Alkylphosphocholines inhibit choline uptake and phosphatidylcholine biosynthesis in rat sympathetic neurons and impair axonal extension. Biochem J 312(Pt 2):411–417PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Posse de Chaves E, Vance DE, Campenot RB, Vance JE (1995) Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J Cell Biol 128:913–918PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Romigi A, Bari M, Placidi F, Marciani MG, Malaponti M, Torelli F, Izzi F, Prosperetti C, Zannino S, Corte F, Chiaramonte C, Maccarrone M (2010) Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 51:768–772PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sartorius A, Neumann-Haefelin C, Vollmayr B, Hoehn M, Henn FA (2003) Choline rise in the rat hippocampus induced by electroconvulsive shock treatment. Biol Psychiat 53:620–623PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sartorius A, Schloss P, Vollmayr B, Ende G, Neumann-Haefelin C, Hoehn M, Henn FA (2006) Correlation between mr-spectroscopic rat hippocampal choline levels and phospholipase a2. World J Biol Psychiatry 7:246–250PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Schmitt A, Maras A, Petroianu G, Braus DF, Scheuer L, Gattaz WF (2001) Effects of antipsychotic treatment on membrane phospholipid metabolism in schizophrenia. J Neural Transm (Vienna) 108:1081–1091CrossRefGoogle Scholar
  52. 52.
    Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in cns health and pathology: A focus on the ccl2/ccr2 and cxcl8/cxcr2 networks. J Cereb Blood Flow Metab 30:459–473PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Stilund M, Reuschlein AK, Christensen T, Moller HJ, Rasmussen PV, Petersen T (2014) Soluble cd163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 9:e98588PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452:295–301PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zetterberg H (2017) Review: Tau in biofluids—relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol 43:194–199PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Laura Kranaster
    • 1
    Email author
  • Carolin Hoyer
    • 2
  • Sonani Mindt
    • 3
  • Michael Neumaier
    • 3
  • Norbert Müller
    • 4
    • 5
  • Peter Zill
    • 4
  • Markus J. Schwarz
    • 6
  • Natalie Moll
    • 6
  • Beat Lutz
    • 7
  • Laura Bindila
    • 7
  • Inga Zerr
    • 8
  • Matthias Schmitz
    • 8
  • Kaj Blennow
    • 9
    • 10
  • Henrik Zetterberg
    • 9
    • 10
    • 11
    • 12
  • Dieter Haffner
    • 13
  • Maren Leifheit-Nestler
    • 13
  • Cagakan Ozbalci
    • 14
    • 15
  • Alexander Sartorius
    • 1
  1. 1.Department of Psychiatry and Psychotherapy, Central Institute of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany
  2. 2.Department of NeurologyUniversity Medical Centre MannheimMannheimGermany
  3. 3.Institute for Clinical Chemistry, University Medical Centre Mannheim, Faculty of Medicine MannheimUniversity of HeidelbergMannheimGermany
  4. 4.Department of Psychiatry and PsychotherapyLudwig Maximilian University MunichMunichGermany
  5. 5.Marion Von Tessin Memory-ZentrumMünchenGermany
  6. 6.Institute of Laboratory MedicineUniversity Hospital LMU MunichMunichGermany
  7. 7.Institute for Physiological ChemistryUniversity Medical Center Mainz of the Johannes Gutenberg UniversityMainzGermany
  8. 8.Department of Neurology, National TSE (Transmissible Spongiform Encephalopathies) Reference CentreUniversity Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
  9. 9.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
  10. 10.Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
  11. 11.Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
  12. 12.UK Dementia Research Institute at UCLLondonUK
  13. 13.Department of Pediatric Kidney, Liver and Metabolic DiseasesHannover Medical SchoolHannoverGermany
  14. 14.Randall Centre for Cell and Molecular BiophysicsKing’s College LondonLondonUK
  15. 15.Heidelberg University Biochemistry CenterHeidelbergGermany

Personalised recommendations