Advertisement

Laying out the evidence for the persistence of neurogenesis in the adult human hippocampus

  • Golo KronenbergEmail author
  • Friederike Klempin
Letter to the Editor
  • 198 Downloads

Dear Editor,

We read with great interest the recent review article by Isabel Maurus et al. [1], which succinctly summarizes the main beneficial effects of aerobic exercise on negative and cognitive symptoms in schizophrenia and the key neurobiological mechanisms that may underpin these effects. The authors rightly highlight, among other mechanisms, the upregulation of brain-derived neurotrophic factor (BDNF) together with structural changes associated with aerobic exercise. Neurogenesis is a key aspect of structural plasticity and a wealth of experimental knowledge has accumulated on the robust neurogenesis-inducing effects of physical activity in rodents. Moreover, decreased cell proliferation in the dentate gyrus was found in schizophrenia, thereby providing strong, but not conclusive, evidence that reduced neurogenesis forms part of the underlying disease process in the brain [2]. We therefore think that, in their review, the authors may have been overly cautious in their...

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P (2019) Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 269(5):499–515CrossRefPubMedGoogle Scholar
  2. 2.
    Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch KP (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11(5):514–522CrossRefPubMedGoogle Scholar
  3. 3.
    Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Burns KA, Ayoub AE, Breunig JJ, Adhami F, Weng WL, Colbert MC, Rakic P, Kuan CY (2007) Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex 17(11):2585–2592CrossRefPubMedGoogle Scholar
  5. 5.
    Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467(4):455–463CrossRefPubMedGoogle Scholar
  6. 6.
    Leuner B, Waddell J, Gould E, Shors TJ (2006) Temporal discontiguity is neither necessary nor sufficient for learning-induced effects on adult neurogenesis. J Neurosci 26(52):13437–13442CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452CrossRefPubMedGoogle Scholar
  8. 8.
    Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814CrossRefPubMedGoogle Scholar
  9. 9.
    van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034CrossRefPubMedGoogle Scholar
  10. 10.
    Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589–599CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560CrossRefPubMedGoogle Scholar
  12. 12.
    Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture. Progenitor cells from human brain after death. Nature 411(6833):42–43CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life SciencesUniversity of Leicester and Leicestershire Partnership National Health Service TrustLeicesterUK
  2. 2.Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthKlinik und Poliklinik für Psychiatrie und PsychotherapieBerlinGermany
  3. 3.Max Delbrück Center for Molecular Medicine (MDC)BerlinGermany

Personalised recommendations