Advertisement

Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis

  • Liisa Leppik
  • Madis Parksepp
  • Sven Janno
  • Kati Koido
  • Liina Haring
  • Eero Vasar
  • Mihkel Zilmer
Original Paper
  • 45 Downloads

Abstract

Alterations in complex lipids may be involved in pathophysiology of schizophrenia spectrum disorders. Previously, we demonstrated importance of detecting lipid metabolism dysregulation by acylcarnitine (ACs) profile analysis in patients with first-episode psychosis (FEP). The aim of this study was to adopt lipidomics to identify serum glycerophospholipids (GPLs) and sphingomyelins (SMs) for describing FEP status before and after 7-month antipsychotic treatment. Using mass spectrometry and liquid chromatography technique, we profiled 105 individual lipids [14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines (PCs) and 15 SMs] in serum samples from 53 antipsychotic-naïve FEP patients, 44 of them were studied longitudinally and from 37 control subjects (CSs). Among the identified and quantified metabolites one LysoPC was elevated, and contrary the levels of 16 PCs as well as the level of one SM were significantly (p ≤ 0.0005) reduced in antipsychotic-naïve FEP patients compared to CSs. Comparison of serum lipids profiles of FEP patients before and after 7-month antipsychotic treatment revealed that 11 GPLs (2 LysoPCs, 9 PCs), and 2 SMs were found to be significantly changed (p ≤ 0.0005) in which GPLs were up-regulated, and SMs were down-regulated. However, no significant differences were noted when treated patient’s serum lipid profiles were compared with CSs. Our findings suggest that complex lipid profile abnormalities are specifically associated with FEP and these discrepancies reflect two different disease-related pathways. Our findings provide insight into lipidomic information that may be used for monitoring FEP status and impact of the treatment in the early stage of the schizophrenia spectrum disorder.

Keywords

First-episode psychosis Lipidomics Glycerophospholipids Lysophosphatidylcholines Phosphatidylcholines Sphingomyelins 

Notes

Acknowledgements

This research was supported by the European Union through the European Regional Development Fund (Project no. 2014-2020.4.01.15-0012), and grants from the Estonian Research Foundation (IUT 20-41, IUT 20-42). The funding sources do not have any role in the writing of the manuscript or the decision to submit it for the publication.

Author contributions

LH, EV and MZ designed the study. LH, LL, MP and SJ contributed to data collection and carried out the literature search. MZ and KK were responsible for metabolomics measurements. LH, EV and MZ co-wrote the first draft of the report. LL, MP, SJ, KK, LH, EV, MZ critically revised the manuscript. EV and MZ obtained the research funding. All authors reviewed the manuscript for important intellectual content and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical statement

The protocol of this study was approved by the Ethics Review Committee on Human Research of the University of Tartu (Estonia). All subjects gave written informed consent in accordance with the Declaration of Helsinki.

Supplementary material

406_2018_971_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 KB)

References

  1. 1.
    Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol (Oxf) 29:97–115.  https://doi.org/10.1177/0269881114563634 CrossRefGoogle Scholar
  2. 2.
    Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155:101–108.  https://doi.org/10.1016/j.schres.2014.03.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Fraguas D, Díaz-Caneja CM, Rodríguez-Quiroga A, Arango C (2017) Oxidative stress and inflammation in early onset first episode psychosis: a systematic review and meta-analysis. Int J Neuropsychopharmacol 20:435–444.  https://doi.org/10.1093/ijnp/pyx015 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD (2017) Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 74:261–269.  https://doi.org/10.1001/jamapsychiatry.2016.3803 CrossRefPubMedGoogle Scholar
  5. 5.
    Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP (2017) Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 76:336–362.  https://doi.org/10.1016/j.neubiorev.2016.06.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Horrobin DF, Glen AIM, Vaddadi K (1994) The membrane hypothesis of schizophrenia. Schizophr Res 13:195–207.  https://doi.org/10.1016/0920-9964(94)90043-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang A, Sun H, Wang X (2012) Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal Bioanal Chem 404:1239–1245.  https://doi.org/10.1007/s00216-012-6117-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Han X (2016) Lipidomics: comprehensive mass spectrometry of lipids. Wiley, HobokenGoogle Scholar
  9. 9.
    Kriisa K, Leppik L, Balõtšev R, Ottas A, Soomets U, Koido K, Volke V, Innos J, Haring L, Vasar E, Zilmer M (2017) Profiling of acylcarnitines in first episode psychosis before and after antipsychotic treatment. J Proteome Res 16:3558–3566.  https://doi.org/10.1021/acs.jproteome.7b00279 CrossRefPubMedGoogle Scholar
  10. 10.
    Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U, Menni C, Moayyeri A, Santer P, Rungger G, Spector TD, Willeit J, Kiechl S, Mayr M (2014) Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation 129:1821–1831.  https://doi.org/10.1161/CIRCULATIONAHA.113.002500 CrossRefPubMedGoogle Scholar
  11. 11.
    Paapstel K, Kals J, Eha J, Tootsi K, Ottas A, Piir A, Jakobson M, Lieberg J, Zilmer M (2018) Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis. Nutr Metab Cardiovasc Dis 28:44–52.  https://doi.org/10.1016/j.numecd.2017.07.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Sigruener A, Kleber ME, Heimerl S, Liebisch G, Schmitz G, Maerz W (2014) Glycerophospholipid and sphingolipid species and mortality: the ludwigshafen risk and cardiovascular health (LURIC) study. PLoS One.  https://doi.org/10.1371/journal.pone.0085724 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanno K, Wu MK, Agate DS, Fanelli BJ, Wagle N, Scapa EF, Ukomadu C, Cohen DE (2007) Interacting proteins dictate function of the minimal start domain phosphatidylcholine transfer protein/starD2. J Biol Chem 282:30728–30736.  https://doi.org/10.1074/jbc.M703745200 CrossRefPubMedGoogle Scholar
  14. 14.
  15. 15.
    Park JY, Lee S-H, Shin M-J, Hwang G-S (2015) Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction. PLoS One 10:e0135228.  https://doi.org/10.1371/journal.pone.0135228 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schmitt A, Wilczek K, Blennow K, Maras A, Jatzko A, Petroianu G, Braus DF, Gattaz WF (2004) Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol Psychiatry 56:41–45.  https://doi.org/10.1016/j.biopsych.2004.03.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, McKenna P, Bahn S (2008) High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7:4266–4277.  https://doi.org/10.1021/pr800188y CrossRefPubMedGoogle Scholar
  18. 18.
    He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D (2012) Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2:e149.  https://doi.org/10.1038/tp.2012.76 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Weber-Fahr W, Englisch S, Esser A, Tunc-Skarka N, Meyer-Lindenberg A, Ende G, Zink M (2013) Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study. Psychiatry Res Neuroimaging 214:365–373.  https://doi.org/10.1016/j.pscychresns.2013.06.011 CrossRefGoogle Scholar
  20. 20.
    Ghosh S, Dyer RA, Beasley CL (2017) Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 95:135–142.  https://doi.org/10.1016/j.jpsychires.2017.08.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Aquino A, Alexandrino GL, Guest PC, Augusto F, Gomes AF, Murgu M, Steiner J, Martins-de-Souza D (2018) Blood-based lipidomics approach to evaluate biomarkers associated with response to olanzapine, risperidone, and quetiapine treatment in schizophrenia patients. Front Psychiatry.  https://doi.org/10.3389/fpsyt.2018.00209 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lönnqvist J, Sysi-Aho M, Hyötyläinen T, Perälä J, Suvisaari J (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3:19.  https://doi.org/10.1186/gm233 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, Zhao A, Wang P, Yang P, Wu J, Feng G, He L, Jia W, Wan C (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18:67–78.  https://doi.org/10.1038/mp.2011.131 CrossRefPubMedGoogle Scholar
  24. 24.
    Fukuzako H, Kodama S (1999) Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 4:1205–1208Google Scholar
  25. 25.
    Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N, Kunii Y, Wada A, Yang Q, Nishiura K, Akatsu H, Hori A, Hashizume Y, Yamamoto T, Ikemoto K, Setou M, Niwa S (2011) Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 400:1933.  https://doi.org/10.1007/s00216-011-4909-3 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA (2009) Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res 87:278–288.  https://doi.org/10.1002/jnr.21822 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rietkerk T, Boks MPM, Sommer IEC, Jong S de, Kahn RS, Ophoff RA (2009) Network analysis of positional candidate genes of schizophrenia highlights myelin-related pathways. Mol Psychiatry 14:353–355.  https://doi.org/10.1038/mp.2008.86 CrossRefPubMedGoogle Scholar
  28. 28.
    Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, Yao KJ, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA (2012) Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 198:347–352.  https://doi.org/10.1016/j.psychres.2012.02.019 CrossRefPubMedGoogle Scholar
  29. 29.
    McEvoy J, Baillie RA, Zhu H, Buckley P, Keshavan MS, Nasrallah HA, Dougherty GG, Yao JK, Kaddurah-Daouk R (2013) Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One 8:e68717.  https://doi.org/10.1371/journal.pone.0068717 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Suvitaival T, Mantere O, Kieseppä T, Mattila I, Pöhö P, Hyötyläinen T, Suvisaari J, Orešič M (2016) Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. Transl Psychiatry 6:e951.  https://doi.org/10.1038/tp.2016.222 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    O’Gorman A, Suvitaival T, Ahonen L, Cannon M, Zammit S, Lewis G, Roche HM, Mattila I, Hyotylainen T, Oresic M, Brennan L, Cotter DR (2017) Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Transl Psychiatry 7:e1240.  https://doi.org/10.1038/tp.2017.211 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Philippova M, Resink T, Erne P, Bochkov V (2014) Oxidised phospholipids as biomarkers in human disease. Swiss Med Wkly.  https://doi.org/10.4414/smw.2014.14037 CrossRefPubMedGoogle Scholar
  33. 33.
    World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, GenevaGoogle Scholar
  34. 34.
    Gardner DM, Murphy AL, O’Donnell H, Centorrino F, Baldessarini RJ (2010) International consensus study of antipsychotic dosing. Am J Psychiatry 167:686–693.  https://doi.org/10.1176/appi.ajp.2009.09060802 CrossRefPubMedGoogle Scholar
  35. 35.
    Haring L, Koido K, Vasar V, Leping V, Zilmer K, Zilmer M, Vasar E (2015) Antipsychotic treatment reduces psychotic symptoms and markers of low-grade inflammation in first episode psychosis patients, but increases their body mass index. Schizophr Res 169:22–29.  https://doi.org/10.1016/j.schres.2015.08.027 CrossRefPubMedGoogle Scholar
  36. 36.
    Balõtšev R, Haring L, Koido K, Leping V, Kriisa K, Zilmer M, Vasar V, Piir A, Lang A, Vasar E (2017) Antipsychotic treatment is associated with inflammatory and metabolic biomarkers alterations among first-episode psychosis patients: a 7-month follow-up study. Early Interv Psychiatry.  https://doi.org/10.1111/eip.12457 CrossRefPubMedGoogle Scholar
  37. 37.
    Leppik L, Kriisa K, Koido K, Koch K, Kajalaid K, Haring L, Vasar E, Zilmer M (2018) Profiling of amino acids and their derivatives biogenic amines before and after antipsychotic treatment in first-episode psychosis. Front Psychiatry.  https://doi.org/10.3389/fpsyt.2018.00155 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812.  https://doi.org/10.2466/pr0.1962.10.3.799 CrossRefGoogle Scholar
  39. 39.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, HillsdaleGoogle Scholar
  40. 40.
    Nordstokke DW, Zumbo BD (2010) A new nonparametric levene test for equal variances. Psicol Int J Methodol Exp Psychol 31:401–430Google Scholar
  41. 41.
    TIBCO Software Inc (2017) Statistica (data analysis software system), version 13. TIBCO Software Inc., Palo AltoGoogle Scholar
  42. 42.
    Tonks KT, Coster AC, Christopher MJ, Chaudhuri R, Xu A, Gagnon-Bartsch J, Chisholm DJ, James DE, Meikle PJ, Greenfield JR, Samocha-Bonet D (2016) Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity 24:908–916.  https://doi.org/10.1002/oby.21448 CrossRefPubMedGoogle Scholar
  43. 43.
    Chiurchiù V, Leuti A, Maccarrone M (2018) Bioactive lipids and chronic inflammation: managing the fire within. Front Immunol.  https://doi.org/10.3389/fimmu.2018.00038 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sethi S, Hayashi MA, Sussulini A, Tasic L, Brietzke E (2017) Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry 18:506–520.  https://doi.org/10.3109/15622975.2015.1117656 CrossRefPubMedGoogle Scholar
  45. 45.
    Kaddurah-Daouk R, Krishnan KRR (2009) Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology 34:173–186.  https://doi.org/10.1038/npp.2008.174 CrossRefPubMedGoogle Scholar
  46. 46.
    Misiak B, Stańczykiewicz B, Łaczmański Ł, Frydecka D (2017) Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: a systematic review and meta-analysis. Schizophr Res 190:18–27.  https://doi.org/10.1016/j.schres.2017.03.031 CrossRefPubMedGoogle Scholar
  47. 47.
    Carland JE, Mansfield RE, Ryan RM, Vandenberg RJ (2013) Oleoyl-l-carnitine inhibits glycine transport by GlyT2. Br J Pharmacol 168:891–902.  https://doi.org/10.1111/j.1476-5381.2012.02213.x CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koren D, Palladino A (2016) Chap. 3—hypoglycemia. In: Weiss RE, Refetoff S (eds) Genetic diagnosis of endocrine disorders, 2nd edn. Academic Press, San Diego, pp 31–75CrossRefGoogle Scholar
  49. 49.
    Hanamatsu H, Ohnishi S, Sakai S, Yuyama K, Mitsutake S, Takeda H, Hashino S, Igarashi Y (2014) Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr Diabetes 4:e141.  https://doi.org/10.1038/nutd.2014.38 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta BBA Biomembr 1859:1558–1572.  https://doi.org/10.1016/j.bbamem.2017.04.006 CrossRefGoogle Scholar
  51. 51.
    Rodriguez-Cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-Puig A (2017) Sphingolipids and glycerophospholipids—the “ying and yang” of lipotoxicity in metabolic diseases. Prog Lipid Res 66:14–29.  https://doi.org/10.1016/j.plipres.2017.01.002 CrossRefPubMedGoogle Scholar
  52. 52.
    Zivkovic AM, Wiest MM, Nguyen UT, Davis R, Watkins SM, German JB (2009) Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics 5:507.  https://doi.org/10.1007/s11306-009-0174-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Psychiatry Clinic of Tartu University HospitalTartuEstonia
  2. 2.Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational MedicineUniversity of TartuTartuEstonia
  3. 3.Psychiatry Clinic of Viljandi HospitalViljandiEstonia

Personalised recommendations