Advertisement

Resilience and cortical thickness: a MRI study

  • Michael Kahl
  • Gerd Wagner
  • Feliberto de la Cruz
  • Stefanie Köhler
  • C. Christoph SchultzEmail author
Original Paper
  • 63 Downloads

Abstract

Resilience is defined as the psychological resistance which enables the processing of stress and adverse life events and thus constitutes a key factor for the genesis of psychiatric illness. However, little is known about the morphological correlates of resilience in the human brain. Hence, the aim of this study is to examine the neuroanatomical expression of resilience in healthy individuals. 151 healthy subjects were recruited and had to complete a resilience-specific questionnaire (RS-11). All of them underwent a high-resolution T1-weighted MRI in a 3T scanner. Fine-grained cortical thickness was analyzed using FreeSurfer. We found a significant positive correlation between the individual extent of resilience and cortical thickness in a right hemispherical cluster incorporating the lateral occipital cortex, the fusiform gyrus, the inferior parietal cortex as well as the middle and inferior temporal cortex, i.e., a reduced resilience is associated with a decreased cortical thickness in these areas. We lend novel evidence for a direct linkage between psychometric resilience and local cortical thickness. Our findings in a sample of healthy individuals show that a lower resilience is associated with a lower cortical thickness in anatomical areas are known to be involved in the processing of emotional visual input. These regions have been demonstrated to play a role in the pathogenesis of stress and trauma-associated disorders. It can thus be assumed that neuroanatomical variations in these cortical regions might modulate the susceptibility for the development of stress-related disorders.

Keywords

Resilience Morphological Cortical thickness Lateral occipital cortex Fusiform gyrus Inferior parietal cortex Middle temporal cortex Inferior temporal cortex 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Wagnild G, Young M (1993) Development and psychometric evaluation of the resilience scale. J Nurs Meas 1:165–178PubMedGoogle Scholar
  2. 2.
    Lee J-K, Jong-Ku L, Hyeon-Gyeong C, Jae-Yeop K, Juhyun N, Hee-Tae K, Sang-Baek K, Sung-Soo O (2016) Self-resilience as a protective factor against development of post-traumatic stress disorder symptoms in police officers. Ann Occup Environ Med 28:58CrossRefGoogle Scholar
  3. 3.
    Teche SP, Rosa BA, Guimarães RG, Cordini LP, Goi KL JD (2017) Association between resilience and posttraumatic stress disorder among Brazilian victims of urban violence: a cross-sectional case–control study. Trends Psychiatry Psychother 39:116–123CrossRefGoogle Scholar
  4. 4.
    Schulz A, Van der Auwera S, Barnow S, Appel K, Mahler J, Schmidt O, John U, Freyberger H, Grabe H (2014) The impact of childhood trauma on depression: does resilience matter? Population-based results from the Study of Health in Pomerania. J Psychosom Res 77:97–103CrossRefGoogle Scholar
  5. 5.
    Scali J, Gandubert C, Ritchie K, Soulier M, Ancelin M, Chaudieu I (2012) Measuring resilience in adult women using the 10-items Connor–Davidson resilience scale (CD-RISC). Role of trauma exposure and anxiety disorders. PLoS One 7(6):e39879CrossRefGoogle Scholar
  6. 6.
    Las Hayas C, Gómez del Barrio CE, Beato A, Muñoz L, Ángel Padierna P J (2014) Resilience scale-25 Spanish version: validation and assessment in eating disorders. Eat Behav 15:460–463CrossRefGoogle Scholar
  7. 7.
    Elliott TR, Kimbrel N, Meyer E, DeBeer BB, Gulliver S, Kwok O, Morissette S (2015) Resilience, traumatic brain injury, depression and posttraumatic stress among Iraq/Afghanistan war veterans. Rehabil Psychol 60:263–276CrossRefGoogle Scholar
  8. 8.
    Kong F, Xu W, Siyuan Hu, Jia L (2015) Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. NeuroImage 123:165–172CrossRefGoogle Scholar
  9. 9.
    Gupta A, Love A, Kilpatrick L, Labus J, Bhatt R, Chang L, Tillisch K, Naliboff B, Mayer E (2017) Morphological brain measures of cortico-limbic inhibition related to resilience. Neurosci Res 95(9):1760–1775CrossRefGoogle Scholar
  10. 10.
    Schumacher J, Gunzelmann T, Strauß B, Brähler E (2005) Die Resilienzskala - Ein Fragebogen zur Erfassung der psychischen Widerstandsfähigkeit als Personmerkmal. Zeitschrift für Klinische Psychologie Psychiatrie Psychotherapie 53:16–39Google Scholar
  11. 11.
    Cardinale F, Chinnici G, Bramerio M et al (2014) Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics 12(4):535–542CrossRefGoogle Scholar
  12. 12.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Pro Natl Acad Sci USA 97:11050–11055CrossRefGoogle Scholar
  13. 13.
    Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075CrossRefGoogle Scholar
  14. 14.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefGoogle Scholar
  15. 15.
    Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80CrossRefGoogle Scholar
  16. 16.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefGoogle Scholar
  17. 17.
    Hagler DJ, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33:1093–1103CrossRefGoogle Scholar
  18. 18.
    Portzky M, Wagnild G, De Bacquer D, Audenaert K (2010) Psychometric evaluation of the Dutch resilience scale RS-nl on 3265 healthy participants: a confirmation of the association between age and resilience found with the Swedish version. Scand J Caring Sci 24:86–92CrossRefGoogle Scholar
  19. 19.
    Beutel ME, Tibubos AN, Klein EM, Schmutzer G, Reiner I, Kocalevent RD, Brähler E (2017) Childhood adversities and distress—the role of resilience in a representative sample. PLoS One 12(3):e0173826CrossRefGoogle Scholar
  20. 20.
    Emberson LL, Crosswhite SL, Richards JE, Aslin RN (2017) The lateral occipital cortex is selective for object shape, not texture/color, at 6 months. J Neurosci 37(13):3698–3703CrossRefGoogle Scholar
  21. 21.
    MacEvoy SP, Epstein RA (2011) Constructing scenes from objects in human occipitotemporal cortex. Nat Neurosci 14:1323CrossRefGoogle Scholar
  22. 22.
    Yang J, Xu X, Chen Y, Shi Z, Han S (2016) Trait self-esteem and neural activities related to self-evaluation and social feedback. Sci Rep 6:20274CrossRefGoogle Scholar
  23. 23.
    Waugh CE, Shing EZ, Avery BM, Jung Y, Whitlow CT, Maldjian JA (2017) Neural predictors of emotional inertia in daily life. Soc Cogn Affect Neurosci 12(9):1448–1459CrossRefGoogle Scholar
  24. 24.
    Daniels JK, Coupland N, Hegadoren KM, Rowe BH, Densmore M, Neufeld RWJ, Lanius RA (2012) Neural and behavioral correlates of peritraumatic dissociation in an acutely traumatized sample. J Clin Psychiatry 73 4:420–426CrossRefGoogle Scholar
  25. 25.
    Fennema-Notestine C, Stein MB, Kennedy CM, Archibald SL, Jernigan TL (2002) Brain morphometry in female victims of intimate partner violence with and without posttraumatic stress disorder. Biol Psychiat 52(11):1089–1101CrossRefGoogle Scholar
  26. 26.
    Tomoda A, Navalta CP, Polcari A, Sadato N, Teicher MH (2009) Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young women. Biol Psychiatry 66(7):642–648CrossRefGoogle Scholar
  27. 27.
    Fallucca E, MacMaster F, Haddad J, Easter P, Dick R, May G, Stanley J, Rix C, Rosenberg D (2011) Distinguishing between major depressive disorder and obsessive–compulsive disorder in children by measuring regional cortical thickness. Arch Gen Psychiatry 68(5):527–533CrossRefGoogle Scholar
  28. 28.
    Lener MS, Kundu P, Wong E, Dewilde K, Tang C, Balchandani P, Murrough J (2016) Cortical abnormalities and association with symptom dimensions across the depressive spectrum. J Affect Disord 190:529–536CrossRefGoogle Scholar
  29. 29.
    Zhang J, Tan Q, Yin H, Zhang X, Huan Y, Tang L, Wang H, Xu J, Li L (2011) Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res Neuroimaging 192(2):84–90CrossRefGoogle Scholar
  30. 30.
    Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc B Biol Sci 361(1476):2109–2128CrossRefGoogle Scholar
  31. 31.
    Ma Y, Han S (2012) Functional dissociation of the left and right fusiform gyrus in self-face recognition. Hum Brain Mapp 33(10):2255–2267CrossRefGoogle Scholar
  32. 32.
    Peelen MV, Downing PE (2004) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603CrossRefGoogle Scholar
  33. 33.
    Kret ME, Denollet J, Grèzes J, de Gelder B (2011) The role of negative affectivity and social inhibition in perceiving social threat: an fMRI study. Neuropsychologia 49(5):1187–1193CrossRefGoogle Scholar
  34. 34.
    Cheng B, Huang X, Li S, Hu X, Luo Y, Wang X, Yang X, Qiu C, Yang Y, Zhang W, Bi F, Roberts N, Gong Q (2015) Gray matter alterations in post-traumatic stress disorder, obsessive–compulsive disorder, and social anxiety disorder. Front Behav Neurosci 9:219PubMedPubMedCentralGoogle Scholar
  35. 35.
    Keding TJ, Herringa RJ (2015) Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology 40(3):537–545CrossRefGoogle Scholar
  36. 36.
    Nilsen AS, Hilland E, Kogstad N, Heir T, Hauff E, Lien L, Endestad T (2016) Right temporal cortical hypertrophy in resilience to trauma: an MRI study. Eur J Psychotraumatol 7:31314CrossRefGoogle Scholar
  37. 37.
    van der Werff SJA, Pannekoeka JN, Veerb IM, van Tolc M, Alemanc A, Veltmand D, Zitmana F, Romboutsb S, Elzingae B, van der Wee N (2013) Resilience to childhood maltreatment is associated with increased resting-state functional connectivity of the salience network with the lingual gyrus. Child Abuse Neglect 37(11):1021–1029CrossRefGoogle Scholar
  38. 38.
    Sugiura M, Sassa Y, Jeong H, Wakusawa K, Horie K, Sato S, Kawashima R (2012) Self-face recognition in social context. Hum Brain Mapp 33(6):1364–1374CrossRefGoogle Scholar
  39. 39.
    Miyashita Y (1993) Inferior temporal cortex: where visual perception meets memory. Annu Rev Neurosci 16(1):245–263CrossRefGoogle Scholar
  40. 40.
    Gross CG (2008) Single neuron studies of inferior temporal cortex. Neuropsychologia 46(3):841–852CrossRefGoogle Scholar
  41. 41.
    Daniels JK, Frewen P, Theberge J, Lanius RA (2016) Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder. Acta Psychiatr Scand 133(3):232–240CrossRefGoogle Scholar
  42. 42.
    Bremner JD, Narayan M, Staib L, Southwick S, McGlashan T, Charney D (1999) Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 156(11):1787–1795PubMedPubMedCentralGoogle Scholar
  43. 43.
    Mueller-Pfeiffer C, Schick M, chulte-Vels T, O’Gorman R, Michels L, Martin-Soelch C, Blair J, Rufer M, Schnyder U, Zeffiro T, Hasler G (2013) Atypical visual processing in posttraumatic stress disorder. NeuroImage Clin 3:531–538CrossRefGoogle Scholar
  44. 44.
    Kroes MC, Whalley MG, Rugg MD, Brewin CR (2011) Association between flashbacks and structural brain abnormalities in posttraumatic stress disorder. Eur Psychiatry 26(8):525–531CrossRefGoogle Scholar
  45. 45.
    Posner P, Petersen MI, Fox SE, Raichle PT ME (1988) Localization of cognitive operations in the human brain. Science 240(4859):1627CrossRefGoogle Scholar
  46. 46.
    Kaplan JT, Aziz-Zadeh L, Uddin LQ, Iacoboni M (2008) The self across the senses: an fMRI study of self-face and self-voice recognition. Soc Cogn Affect Neurosci 3(3):218–223CrossRefGoogle Scholar
  47. 47.
    Adolphs R, Damasio H, Tranel D, Damasio A (1996) Cortical systems for the recognition of emotion in facial expressions. J Neurosci 16(23):7678CrossRefGoogle Scholar
  48. 48.
    White SF, Costanzo M, Blair J, Roy M (2015) PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample. NeuroImage Clin 7:19–27CrossRefGoogle Scholar
  49. 49.
    Qi S, Mu Y, Liu K, Zhang J, Huan Y, Tan Q, Shi M, Wang Q, Chen Y, Wang H, Zhang N, Zhang X, Xiong L, Yin H (2013) Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure. NeuroImage Clin 3:226–233CrossRefGoogle Scholar
  50. 50.
    Xiong K, Zhang Y, Qiu M, Zhang J, Sang L, Wang L, Xie B, Wang J, Li M (2013) Negative emotion regulation in patients with posttraumatic stress disorder. PLoS One 8(12):e81957CrossRefGoogle Scholar
  51. 51.
    Ley RG, Bryden MP (1979) Hemispheric differences in processing emotions and faces. Brain Lang 7(1):127–138CrossRefGoogle Scholar
  52. 52.
    Palmieri A, Naccarato M, Abrahams S, Bonato M, D’Ascenzo C, Balestreri S, Cima V, Querin G, Dal Borgo R, Barachino L, Volpato C, Semenza C, Pegoraro E, Angelini C, Soraru G (2010) Right hemisphere dysfunction and emotional processing in ALS: an fMRI study. J Neurol 257(12):1970–1978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
  2. 2.Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and PsychotherapyJena University HospitalJenaGermany
  3. 3.Department of Psychiatry and PsychotherapyKlinikum Fulda gAG, Universitätsmedizin Marburg, Campus FuldaFuldaGermany

Personalised recommendations