Advertisement

Relationship between VEGF-related gene polymorphisms and brain morphology in treatment-naïve patients with first-episode major depressive disorder

  • LeHoa Nguyen
  • Shingo Kakeda
  • Asuka Katsuki
  • Koichiro Sugimoto
  • Yuka Otsuka
  • Issei Ueda
  • Ryohei Igata
  • Keita Watanabe
  • Taro Kishi
  • Nakao Iwata
  • Yukunori Korogi
  • Reiji YoshimuraEmail author
Original Paper

Abstract

Vascular endothelial growth factor (VEGF) is involved in the development of major depressive disorder (MDD). Recently, a genome-wide association study has revealed that four VEGF-related single nucleotide polymorphisms (SNPs) (i.e., rs4416670, rs6921438, rs6993770 and rs10738760) were independently associated with circulating VEGF levels. The current study investigated the relationship between brain volume and these four SNPs in first-episode drug-naïve MDD patients. A total of 38 first-episode drug-naïve MDD patients and 39 healthy subjects (HS) were recruited and underwent high-resolution T1-weighted imaging. Blood samples were collected from all the participants for serum VEGF assays and VEGF-related SNPs genotyping. Genotype–diagnosis interactions related to whole-brain cortical thickness and hippocampal subfield volumes were evaluated for the four SNPs. The results revealed a genotype–diagnosis interaction only for rs6921438 (i.e., the MDD patients and HS with the G/G genotype versus the MDD patients and HS with A-carrier genotype) in the subiculum of the left hippocampus (p < 0.05), and not the other SNPs. There was a volume reduction in the left subiculum of G/G genotype patients compared with the other groups. The “hypochondriasis” scores of the HAMD-17 scale were significantly higher in the G/G genotype patients than the A-carrier genotype patients. The association was observed between VEGF-related SNP rs6921438 and subiculum atrophy in first-episode drug-naïve MDD patients.

Keywords

Major depressive disorder Vascular endothelial growth factor (VEGF) VEGF-related gene polymorphisms Brain morphology Hippocampal subfields volume Surface-based morphometry 

Notes

Acknowledgements

This study was supported by a Health and Labor Research Grant in Japan (#1401010101).

Funding

This study did not receive any specific grant from any funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors have reported no potential conflicts of interest. The authors have completed the form for the disclosure of potential conflicts of interest.

References

  1. 1.
    Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87(7):1153–1155Google Scholar
  2. 2.
    Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26(9):943–954.  https://doi.org/10.1002/bies.20092 Google Scholar
  3. 3.
    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99(18):11946–11950.  https://doi.org/10.1073/pnas.182296499 Google Scholar
  4. 4.
    Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19(14):5731–5740Google Scholar
  5. 5.
    Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, Segal M, Yirmiya R, Keshet E (2011) Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci USA 108(12):5081–5086.  https://doi.org/10.1073/pnas.1007640108 Google Scholar
  6. 6.
    McCloskey DP, Croll SD, Scharfman HE (2005) Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 25(39):8889–8897.  https://doi.org/10.1523/JNEUROSCI.2577-05.2005 Google Scholar
  7. 7.
    Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 15(7):1218–1220Google Scholar
  8. 8.
    Clark-Raymond A, Halaris A (2013) VEGF and depression: a comprehensive assessment of clinical data. J Psychiatr Res 47(8):1080–1087.  https://doi.org/10.1016/j.jpsychires.2013.04.008 Google Scholar
  9. 9.
    Sharma AN, da Costa e Silva BF, Soares JC, Carvalho AF, Quevedo J (2016) Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J Affect Disord 197:9–20.  https://doi.org/10.1016/j.jad.2016.02.067 Google Scholar
  10. 10.
    Iga J, Ueno S, Yamauchi K, Numata S, Tayoshi-Shibuya S, Kinouchi S, Nakataki M, Song H, Hokoishi K, Tanabe H, Sano A, Ohmori T (2007) Gene expression and association analysis of vascular endothelial growth factor in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 31(3):658–663.  https://doi.org/10.1016/j.pnpbp.2006.12.011 Google Scholar
  11. 11.
    Lee BH, Kim YK (2012) Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. J Affect Disord 136(1–2):181–184.  https://doi.org/10.1016/j.jad.2011.07.021 Google Scholar
  12. 12.
    Duric V, Duman RS (2013) Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 70(1):39–53.  https://doi.org/10.1007/s00018-012-1020-7 Google Scholar
  13. 13.
    Debette S, Visvikis-Siest S, Chen MH, Ndiaye NC, Song C, Destefano A, Safa R, Azimi Nezhad M, Sawyer D, Marteau JB, Xanthakis V, Siest G, Sullivan L, Pfister M, Smith H, Choi SH, Lamont J, Lind L, Yang Q, Fitzgerald P, Ingelsson E, Vasan RS, Seshadri S (2011) Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels. Circ Res 109(5):554–563.  https://doi.org/10.1161/CIRCRESAHA.111.243790 Google Scholar
  14. 14.
    Xie T, Stathopoulou MG, de Andres F, Siest G, Murray H, Martin M, Cobaleda J, Delgado A, Lamont J, Penas LE, Visvikis-Siest ALL S (2017) VEGF-related polymorphisms identified by GWAS and risk for major depression. Transl Psychiatry 7(3):e1055.  https://doi.org/10.1038/tp.2017.36 Google Scholar
  15. 15.
    Schmaal L, Veltman DJ, van Erp TG, Samann PG, Frodl T, Jahanshad N, Loehrer E, Tiemeier H, Hofman A, Niessen WJ, Vernooij MW, Ikram MA, Wittfeld K, Grabe HJ, Block A, Hegenscheid K, Volzke H, Hoehn D, Czisch M, Lagopoulos J, Hatton SN, Hickie IB, Goya-Maldonado R, Kramer B, Gruber O, Couvy-Duchesne B, Renteria ME, Strike LT, Mills NT, de Zubicaray GI, McMahon KL, Medland SE, Martin NG, Gillespie NA, Wright MJ, Hall GB, MacQueen GM, Frey EM, Carballedo A, van Velzen LS, van Tol MJ, van der Wee NJ, Veer IM, Walter H, Schnell K, Schramm E, Normann C, Schoepf D, Konrad C, Zurowski B, Nickson T, McIntosh AM, Papmeyer M, Whalley HC, Sussmann JE, Godlewska BR, Cowen PJ, Fischer FH, Rose M, Penninx BW, Thompson PM, Hibar DP (2016) Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 21(6):806–812.  https://doi.org/10.1038/mp.2015.69 Google Scholar
  16. 16.
    Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, Cheung JW, van Erp TGM, Bos D, Ikram MA, Vernooij MW, Niessen WJ, Tiemeier H, Hofman A, Wittfeld K, Grabe HJ, Janowitz D, Bulow R, Selonke M, Volzke H, Grotegerd D, Dannlowski U, Arolt V, Opel N, Heindel W, Kugel H, Hoehn D, Czisch M, Couvy-Duchesne B, Renteria ME, Strike LT, Wright MJ, Mills NT, de Zubicaray GI, McMahon KL, Medland SE, Martin NG, Gillespie NA, Goya-Maldonado R, Gruber O, Kramer B, Hatton SN, Lagopoulos J, Hickie IB, Frodl T, Carballedo A, Frey EM, van Velzen LS, Penninx B, van Tol MJ, van der Wee NJ, Davey CG, Harrison BJ, Mwangi B, Cao B, Soares JC, Veer IM, Walter H, Schoepf D, Zurowski B, Konrad C, Schramm E, Normann C, Schnell K, Sacchet MD, Gotlib IH, MacQueen GM, Godlewska BR, Nickson T, McIntosh AM, Papmeyer M, Whalley HC, Hall J, Sussmann JE, Li M, Walter M, Aftanas L, Brack I, Bokhan NA, Thompson PM, Veltman DJ (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 22(6):900–909.  https://doi.org/10.1038/mp.2016.60 Google Scholar
  17. 17.
    Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19.  https://doi.org/10.1016/j.neuron.2009.11.031 Google Scholar
  18. 18.
    Ballmaier M, Narr KL, Toga AW, Elderkin-Thompson V, Thompson PM, Hamilton L, Haroon E, Pham D, Heinz A, Kumar A (2008) Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am J Psychiatry 165(2):229–237.  https://doi.org/10.1176/appi.ajp.2007.07030506 Google Scholar
  19. 19.
    Cao B, Passos IC, Mwangi B, Amaral-Silva H, Tannous J, Wu MJ, Zunta-Soares GB, Soares JC (2017) Hippocampal subfield volumes in mood disorders. Mol Psychiatry 22(9):1352–1358.  https://doi.org/10.1038/mp.2016.262 Google Scholar
  20. 20.
    Cole J, Toga AW, Hojatkashani C, Thompson P, Costafreda SG, Cleare AJ, Williams SC, Bullmore ET, Scott JL, Mitterschiffthaler MT, Walsh ND, Donaldson C, Mirza M, Marquand A, Nosarti C, McGuffin P, Fu CH (2010) Subregional hippocampal deformations in major depressive disorder. J Affect Disord 126(1–2):272–277.  https://doi.org/10.1016/j.jad.2010.03.004 Google Scholar
  21. 21.
    Frey BN, Andreazza AC, Nery FG, Martins MR, Quevedo J, Soares JC, Kapczinski F (2007) The role of hippocampus in the pathophysiology of bipolar disorder. Behav Pharmacol 18(5–6):419–430.  https://doi.org/10.1097/FBP.0b013e3282df3cde Google Scholar
  22. 22.
    Posener JA, Wang L, Price JL, Gado MH, Province MA, Miller MI, Babb CM, Csernansky JG (2003) High-dimensional mapping of the hippocampus in depression. Am J Psychiatry 160(1):83–89.  https://doi.org/10.1176/appi.ajp.160.1.83 Google Scholar
  23. 23.
    Tae WS, Kim SS, Lee KU, Nam EC, Choi JW, Park JI (2011) Hippocampal shape deformation in female patients with unremitting major depressive disorder. AJNR Am J Neuroradiol 32(4):671–676.  https://doi.org/10.3174/ajnr.A2367 Google Scholar
  24. 24.
    Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161(4):598–607.  https://doi.org/10.1176/appi.ajp.161.4.598 Google Scholar
  25. 25.
    Molendijk ML, van Tol MJ, Penninx BW, van der Wee NJ, Aleman A, Veltman DJ, Spinhoven P, Elzinga BM (2012) BDNF val66met affects hippocampal volume and emotion-related hippocampal memory activity. Transl Psychiatry 2:e74.  https://doi.org/10.1038/tp.2011.72 Google Scholar
  26. 26.
    Ide S, Kakeda S, Watanabe K, Yoshimura R, Abe O, Hayashi K, Ueda I, Kishi T, Katsuki A, Umene-Nakano W, Iwata N, Nakamura J, Korogi Y (2015) Relationship between a BDNF gene polymorphism and the brain volume in treatment-naive patients with major depressive disorder: A VBM analysis of brain MRI. Psychiatry Res 233(2):120–124.  https://doi.org/10.1016/j.pscychresns.2015.05.016 Google Scholar
  27. 27.
    Igata N, Kakeda S, Watanabe K, Ide S, Kishi T, Abe O, Igata R, Katsuki A, Iwata N, Yoshimura R, Korogi Y (2017) Voxel-based morphometric brain comparison between healthy subjects and major depressive disorder patients in Japanese with the s/s genotype of 5-HTTLPR. Sci Rep 7(1):3931.  https://doi.org/10.1038/s41598-017-04347-8 Google Scholar
  28. 28.
    Pan CC, McQuoid DR, Taylor WD, Payne ME, Ashley-Koch A, Steffens DC (2009) Association analysis of the COMT/MTHFR genes and geriatric depression: an MRI study of the putamen. Int J Geriatr Psychiatry 24(8):847–855.  https://doi.org/10.1002/gps.2206 Google Scholar
  29. 29.
    Watanabe K, Kakeda S, Yoshimura R, Abe O, Ide S, Hayashi K, Katsuki A, Umene-Nakano W, Watanabe R, Nakamura J, Korogi Y (2015) Relationship between the catechol-O-methyl transferase Val108/158Met genotype and brain volume in treatment-naive major depressive disorder: Voxel-based morphometry analysis. Psychiatry Res 233(3):481–487.  https://doi.org/10.1016/j.pscychresns.2015.07.024 Google Scholar
  30. 30.
    Ueda I, Kakeda S, Watanabe K, Yoshimura R, Kishi T, Abe O, Ide S, Moriya J, Katsuki A, Hori H, Iwata N, Nakamura J, Korogi Y (2016) Relationship between G1287A of the NET Gene Polymorphisms and Brain Volume in Major Depressive Disorder: A Voxel-Based MRI Study. PLoS One 11(3):e0150712.  https://doi.org/10.1371/journal.pone.0150712 Google Scholar
  31. 31.
    Igata R, Katsuki A, Kakeda S, Watanabe K, Igata N, Hori H, Konishi Y, Atake K, Kawasaki Y, Korogi Y, Yoshimura R (2017) PCLO rs2522833-mediated gray matter volume reduction in patients with drug-naive, first-episode major depressive disorder. Transl Psychiatry 7(5):e1140.  https://doi.org/10.1038/tp.2017.100 Google Scholar
  32. 32.
    Hamilton M (1967) Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 6(4):278–296Google Scholar
  33. 33.
    Serretti A, Cusin C, Lattuada E, Bella DD, Catalano M, Smeraldi E (1999) Serotonin transporter gene (5-HTTLPR) is not associated with depressive symptomatology in mood disorders. Molecular Psychiatry 4:280.  https://doi.org/10.1038/sj.mp.4000485 Google Scholar
  34. 34.
    Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30(2):436–443.  https://doi.org/10.1016/j.neuroimage.2005.09.046 Google Scholar
  35. 35.
    Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97.  https://doi.org/10.1109/42.668698 Google Scholar
  36. 36.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194.  https://doi.org/10.1006/nimg.1998.0395 Google Scholar
  37. 37.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055.  https://doi.org/10.1073/pnas.200033797 Google Scholar
  38. 38.
    Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, Dickerson BC, Golland P, Fischl B (2009) Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 19(6):549–557.  https://doi.org/10.1002/hipo.20615 Google Scholar
  39. 39.
    Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van Leemput K, Alzheimer’s Disease Neuroimaging I (2015) A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115:117–137.  https://doi.org/10.1016/j.neuroimage.2015.04.042 Google Scholar
  40. 40.
    Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458.  https://doi.org/10.1038/bmt.2012.244 Google Scholar
  41. 41.
    Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, Williams SC (2011) Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690.  https://doi.org/10.1001/archgenpsychiatry.2011.60 Google Scholar
  42. 42.
    Chen MC, Hamilton JP, Gotlib IH (2010) Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 67(3):270–276.  https://doi.org/10.1001/archgenpsychiatry.2009.202 Google Scholar
  43. 43.
    Brown ES, Hughes CW, McColl R, Peshock R, King KS, Rush AJ (2014) Association of depressive symptoms with hippocampal volume in 1936 adults. Neuropsychopharmacology 39(3):770–779.  https://doi.org/10.1038/npp.2013.271 Google Scholar
  44. 44.
    Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8(6):608–619Google Scholar
  45. 45.
    Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56(9):640–650.  https://doi.org/10.1016/j.biopsych.2004.08.022 Google Scholar
  46. 46.
    Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 57(4):349–356Google Scholar
  47. 47.
    Willard SL, Riddle DR, Forbes ME, Shively CA (2013) Cell number and neuropil alterations in subregions of the anterior hippocampus in a female monkey model of depression. Biol Psychiatry 74(12):890–897.  https://doi.org/10.1016/j.biopsych.2013.03.013 Google Scholar
  48. 48.
    Isikli S, Ugurlu O, Durmusoglu E, Kizilates G, Kitis O, Ozan E, Eker C, Coburn K, Gonul AS (2013) Altered hippocampal formation shape in first-episode depressed patients at 5-year follow-up. J Psychiatr Res 47(1):50–55.  https://doi.org/10.1016/j.jpsychires.2012.08.022 Google Scholar
  49. 49.
    Watanabe R, Kakeda S, Watanabe K, Liu X, Katsuki A, Umeno-Nakano W, Hori H, Abe O, Yoshimura R, Korogi Y (2017) Relationship between the hippocampal shape abnormality and serum cortisol levels in first-episode and drug-naive major depressive disorder patients. Depress Anxiety 34(5):401–409.  https://doi.org/10.1002/da.22604 Google Scholar
  50. 50.
    Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, Concas MP, Traglia M, Barbieri C, Ndiaye NC, Stathopoulou MG, Lagou V, Maestrale GB, Sala C, Debette S, Kovacs P, Lind L, Lamont J, Fitzgerald P, Tonjes A, Gudnason V, Toniolo D, Pirastu M, Bellenguez C, Vasan RS, Ingelsson E, Leutenegger AL, Johnson AD, DeStefano AL, Visvikis-Siest S, Seshadri S, Ciullo M (2016) Six novel loci associated with circulating VEGF levels identified by a meta-analysis of genome-wide association studies. PLoS Genet 12(2):e1005874.  https://doi.org/10.1371/journal.pgen.1005874 Google Scholar
  51. 51.
    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36(8):827–835.  https://doi.org/10.1038/ng1395 Google Scholar
  52. 52.
    de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255(5047):989–991Google Scholar
  53. 53.
    Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90(16):7533–7537Google Scholar
  54. 54.
    Yang SZ, Zhang LM, Huang YL, Sun FY (2003) Distribution of Flk-1 and Flt-1 receptors in neonatal and adult rat brains. Anat Rec A Discov Mol Cell Evol Biol 274(1):851–856.  https://doi.org/10.1002/ar.a.10103 Google Scholar
  55. 55.
    Heine VM, Zareno J, Maslam S, Joels M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21(5):1304–1314.  https://doi.org/10.1111/j.1460-9568.2005.03951.x Google Scholar
  56. 56.
    Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65(2):257–269.  https://doi.org/10.1016/j.neuron.2009.12.002 Google Scholar
  57. 57.
    Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76(4):804–812.  https://doi.org/10.1016/j.neuron.2012.09.028 Google Scholar
  58. 58.
    Kahl KG, Bens S, Ziegler K, Rudolf S, Kordon A, Dibbelt L, Schweiger U (2009) Angiogenic factors in patients with current major depressive disorder comorbid with borderline personality disorder. Psychoneuroendocrinology 34(3):353–357.  https://doi.org/10.1016/j.psyneuen.2008.09.016 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • LeHoa Nguyen
    • 1
    • 4
  • Shingo Kakeda
    • 2
  • Asuka Katsuki
    • 1
  • Koichiro Sugimoto
    • 2
  • Yuka Otsuka
    • 1
  • Issei Ueda
    • 2
  • Ryohei Igata
    • 1
  • Keita Watanabe
    • 2
  • Taro Kishi
    • 3
  • Nakao Iwata
    • 3
  • Yukunori Korogi
    • 2
  • Reiji Yoshimura
    • 1
    Email author
  1. 1.Department of PsychiatryUniversity of Occupational and Environmental HealthKitakyushuJapan
  2. 2.Department of RadiologyUniversity of Occupational and Environmental HealthKitakyushuJapan
  3. 3.Department of PsychiatryFujita Health University School of MedicineNagoyaJapan
  4. 4.School of Medicine and PharmacyVietnam National UniversityHanoiVietnam

Personalised recommendations