Advertisement

Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer’s disease patients

  • Jessyka Maria de França Bram
  • Leda Leme Talib
  • Helena Passarelli Giroud Joaquim
  • Tamires Alves Sarno
  • Wagner Farid Gattaz
  • Orestes Vicente ForlenzaEmail author
Original Paper

Abstract

The clinical diagnosis of Alzheimer’s disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve—AUC—0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.

Keywords

Alzheimer’s disease Platelet Leukocyte ADAM10 BACE1 PSEN1 

Notes

Acknowledgements

Financial support: FAPESP (Fundação de Amparo à Pesquisa de São Paulo, Grant nos 2013/20695-3 and 2009/52825-8), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Project 554535/2005-0), and ABADHS (Associação Beneficente Alzira Denise Hertzog da Silva).

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Barthel H, Gertz H-J, Dresel S et al (2011) Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435.  https://doi.org/10.1016/S1474-4422(11)70077-1 CrossRefPubMedGoogle Scholar
  2. 2.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:263–269.  https://doi.org/10.1016/j.jalz.2011.03.005 CrossRefGoogle Scholar
  3. 3.
    Henriksen K, O’Bryant SE, Hampel H et al (2014) The future of blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dement 10:115–131.  https://doi.org/10.1016/j.jalz.2013.01.013 CrossRefGoogle Scholar
  4. 4.
    O’Bryant SE (2016) Introduction to special issue on Advances in blood-based biomarkers of Alzheimer’s disease. Alzheimer’s Dement (Amst Neth) 3:110–112.  https://doi.org/10.1016/j.dadm.2016.06.003 CrossRefGoogle Scholar
  5. 5.
    O’Bryant SE, Mielke MM, Rissman RA et al (2017) Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s Dement 13:45–58.  https://doi.org/10.1016/j.jalz.2016.09.014 CrossRefGoogle Scholar
  6. 6.
    Bussière T, Giannakopoulos P, Bouras C et al (2003) Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol 463:281–302.  https://doi.org/10.1002/cne.10760 CrossRefPubMedGoogle Scholar
  7. 7.
    Rodgers A (2008) Alzheimer’s disease: unraveling the mystery. Alzheimer’s Disease Education and Referral (ADEAR) Center, Silver SpringGoogle Scholar
  8. 8.
    Qin W, Ho L, Wang J et al (2009) S100A7, a novel Alzheimer’s disease biomarker with non-amyloidogenic α-secretase activity acts via selective promotion of ADAM-10. PLoS One 4:e4183.  https://doi.org/10.1371/journal.pone.0004183 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yoon S-S, Jo SA (2012) Mechanisms of amyloid-β peptide clearance: potential therapeutic targets for Alzheimer’s disease. Biomol Ther (Seoul) 20:245–255.  https://doi.org/10.4062/biomolther.2012.20.3.245 CrossRefGoogle Scholar
  10. 10.
    Jack CR, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128.  https://doi.org/10.1016/S1474-4422(09)70299-6 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Blennow K, Dubois B, Fagan AM et al (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimer’s Dement 11:58–69.  https://doi.org/10.1016/j.jalz.2014.02.004 CrossRefGoogle Scholar
  12. 12.
    Blennow K (2017) A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood. Neurol Ther 6:15–24.  https://doi.org/10.1007/s40120-017-0073-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galasko D, Golde TE (2013) Biomarkers for Alzheimer’s disease in plasma, serum and blood—conceptual and practical problems. Alzheimers Res Ther 5:10.  https://doi.org/10.1186/alzrt164 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gisslén M, Price RW, Andreasson U et al (2016) Plasma Concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140.  https://doi.org/10.1016/j.ebiom.2015.11.036 CrossRefPubMedGoogle Scholar
  15. 15.
    Bayer T, Cappai R, Masters C et al (1999) It all sticks together—the APP-related family of proteins and Alzheimer’s disease. Mol Psychiatry 4:524–528.  https://doi.org/10.1038/sj.mp.4000552 CrossRefPubMedGoogle Scholar
  16. 16.
    Di Luca M, Colciaghi F, Pastorino L et al (2000) Platelets as a peripheral district where to study pathogenetic mechanisms of Alzheimer disease: the case of amyloid precursor protein. Eur J Pharmacol 405:277–283CrossRefGoogle Scholar
  17. 17.
    Skovronsky DM, Lee VM-Y, Praticò D (2001) Amyloid precursor protein and amyloid β peptide in human platelets. J Biol Chem 276:17036–17043.  https://doi.org/10.1074/jbc.M006285200 CrossRefPubMedGoogle Scholar
  18. 18.
    Racchi M, Govoni S (2003) The pharmacology of amyloid precursor protein processing. Exp Gerontol 38:145–157CrossRefGoogle Scholar
  19. 19.
    Haass C (2004) Take five–BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23:483–488.  https://doi.org/10.1038/sj.emboj.7600061 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zainaghi IA, Forlenza OV, Gattaz WF (2007) Abnormal APP processing in platelets of patients with Alzheimer’s disease: correlations with membrane fluidity and cognitive decline. Psychopharmacology 192:547–553.  https://doi.org/10.1007/s00213-007-0748-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Cole SL, Vassar R (2008) BACE1 structure and function in health and Alzheimer’s disease. Curr Alzheimer Res 5:100–120.  https://doi.org/10.2174/156720508783954758 CrossRefPubMedGoogle Scholar
  22. 22.
    Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30.  https://doi.org/10.1101/gad.1039703 CrossRefGoogle Scholar
  23. 23.
    Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37-43CrossRefGoogle Scholar
  24. 24.
    Vingtdeux V, Marambaud P (2012) Identification and biology of α-secretase. J Neurochem 120:34–45.  https://doi.org/10.1111/j.1471-4159.2011.07477.x CrossRefPubMedGoogle Scholar
  25. 25.
    Schellenberg G, Bird T, Wijsman E et al (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671.  https://doi.org/10.1126/science.1411576 CrossRefPubMedGoogle Scholar
  26. 26.
    De Strooper B (2003) Aph-1, Pen-2, and nicastrin with Presenilin generate an active γ-secretase complex. Neuron 38:9–12CrossRefGoogle Scholar
  27. 27.
    Tang K, Hynan LS, Baskin F, Rosenberg RN (2006) Platelet amyloid precursor protein processing: a bio-marker for Alzheimer’s disease. J Neurol Sci 240:53–58.  https://doi.org/10.1016/j.jns.2005.09.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Zainaghi IA, Talib LL, Diniz BS et al (2012) Reduced platelet amyloid precursor protein ratio (APP ratio) predicts conversion from mild cognitive impairment to Alzheimer’s disease. J Neural Transm 119:815–819.  https://doi.org/10.1007/s00702-012-0807-x CrossRefPubMedGoogle Scholar
  29. 29.
    Diniz BSO, Pinto JA, Forlenza OV (2008) Do CSF total tau, phosphorylated tau, and β-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? A systematic review and meta-analysis of the literature. World J Biol Psychiatry 9:172–182.  https://doi.org/10.1080/15622970701535502 CrossRefPubMedGoogle Scholar
  30. 30.
    Forlenza OV, Diniz BS, Teixeira AL et al (2015) Lower cerebrospinal fluid concentration of brain-derived neurotrophic factor predicts progression from mild cognitive impairment to Alzheimer’s disease. NeuroMol Med 17:326–332.  https://doi.org/10.1007/s12017-015-8361-y CrossRefGoogle Scholar
  31. 31.
    Forlenza OV, Radanovic M, Talib LL et al (2015) Cerebrospinal fluid biomarkers in Alzheimer’s disease: diagnostic accuracy and prediction of dementia. Alzheimer’s dement diagnosis. Assess Dis Monit 1:455–463.  https://doi.org/10.1016/j.dadm.2015.09.003 CrossRefGoogle Scholar
  32. 32.
    Gardella JE, Gorgone GA, Newman P et al (1992) Characterization of Alzheimer amyloid precursor protein transcripts in platelets and megakarocytes. Neurosci Lett 138:229–232.  https://doi.org/10.1016/0304-3940(92)90921-S CrossRefPubMedGoogle Scholar
  33. 33.
    Veitinger M, Varga B, Guterres SB, Zellner M (2014) Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers? Acta Neuropathol Commun 2:65.  https://doi.org/10.1186/2051-5960-2-65 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rosenberg RN, Baskin F, Fosmire JA et al (1997) Altered amyloid protein processing in platelets of patients with Alzheimer disease. Arch Neurol 54:139–144CrossRefGoogle Scholar
  35. 35.
    Bush AI, Tanzi RE (1998) Alzheimer-disease-related abnormalities of amyloid β precursor protein isoforms in the platelet—the brains delegate in the periphery. Arch Neurol 55:1179–1180.  https://doi.org/10.1001/archneur.55.9.1179 CrossRefPubMedGoogle Scholar
  36. 36.
    Di Luca M (1998) Differential level of platelet amyloid beta precursor protein isoforms: an early marker for Alzheimer disease. Arch Neurol 55:1195–1200.  https://doi.org/10.1001/archneur.55.9.1195 CrossRefPubMedGoogle Scholar
  37. 37.
    Li Q, Whyte S, Tanner J et al (1998) Secretion of Alzheimer’s disease Abeta amyloid peptide by activated human platelets. Lab Investig 78:461–469PubMedGoogle Scholar
  38. 38.
    Li QX, Evin G, Small DH et al (1995) Proteolytic processing of Alzheimer’s disease ?βA4 amyloid precursor protein in human platelets. J Biol Chem 270:14140–14147.  https://doi.org/10.1074/jbc.270.23.14140 CrossRefPubMedGoogle Scholar
  39. 39.
    Evin G, Zhu A, Holsinger RMD et al (2003) Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets. J Neurosci Res 74:386–392.  https://doi.org/10.1002/jnr.10745 CrossRefPubMedGoogle Scholar
  40. 40.
    Golde TE, Estus S, Usiak M et al (1990) Expression of beta amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in alzheimer’s disease using PCR. Neuron 4:253–267.  https://doi.org/10.1016/0896-6273(90)90100-T CrossRefPubMedGoogle Scholar
  41. 41.
    Mönning U, König G, Banati RB et al (1992) Alzheimer beta A4-amyloid protein precursor in immunocompetent cells. J Biol Chem 267:23950–23956PubMedGoogle Scholar
  42. 42.
    Li QX, Berndt MC, Bush AI et al (1994) Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer’s disease in human platelet and brain: surface expression on the activated human platelet. Blood 84:133–142CrossRefGoogle Scholar
  43. 43.
    Delvaux E, Bentley K, Stubbs V et al (2013) Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes. Neurobiol Aging 34:1680–1686.  https://doi.org/10.1016/j.neurobiolaging.2012.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schuck F, Wolf D, Fellgiebel A, Endres K (2016) Increase of α-secretase ADAM10 in platelets along cognitively healthy aging. J Alzheimer’s Dis 50:817–826.  https://doi.org/10.3233/JAD-150737 CrossRefGoogle Scholar
  45. 45.
    Vidal R, Ghiso J, Wisniewski T, Frangione B (1996) Alzheimer’s presenilin 1 gene expression in platelets and megakaryocytes. FEBS Lett 393:19–23.  https://doi.org/10.1016/0014-5793(96)00845-9 CrossRefPubMedGoogle Scholar
  46. 46.
    Colciaghi F, Borroni B, Pastorino L et al (2002) [alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 8:67–74CrossRefGoogle Scholar
  47. 47.
    Decourt B, Walker A, Gonzales A et al (2013) Can platelet BACE1 levels be used as a biomarker for Alzheimer’s disease? Proof-of-concept study. Platelets 24:235–238.  https://doi.org/10.3109/09537104.2012.688899 CrossRefPubMedGoogle Scholar
  48. 48.
    Manzine PR, de França Bram JM, Barham EJ et al (2013) ADAM10 as a biomarker for Alzheimer’s disease: a Study with Brazilian Elderly. Dement Geriatr Cogn Disord 35:58–66.  https://doi.org/10.1159/000345983 CrossRefPubMedGoogle Scholar
  49. 49.
    Marksteiner J, Humpel C (2013) Platelet-derived secreted amyloid-precursor protein-β as a marker for diagnosing Alzheimer’s disease. Curr Neurovasc Res 10:297–303CrossRefGoogle Scholar
  50. 50.
    Sarno TA, Talib LL, Joaquim HPG et al (2017) Protein expression of BACE1 is downregulated by Donepezil in Alzheimer’s disease platelets. J Alzheimers Dis 55:1445–1451.  https://doi.org/10.3233/JAD-160813 CrossRefPubMedGoogle Scholar
  51. 51.
    Rogaev EI, Sherrington R, Wu C et al (1997) Analysis of the 5? Sequence, genomic structure, and alternative splicing of thepresenilin-1gene (psen1) associated with early onset Alzheimer disease. Genomics 40:415–424.  https://doi.org/10.1006/geno.1996.4523 CrossRefPubMedGoogle Scholar
  52. 52.
    Decourt B, Sabbagh MN (2011) BACE1 as a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 24(Suppl 2):53–59.  https://doi.org/10.3233/JAD-2011-110017 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Delvaux E, Bentley K, Stubbs V et al Differential processing of amyloid precursor protein in brain and in peripheral blood leukocytes.  https://doi.org/10.1016/j.neurobiolaging.2012.12.004 CrossRefGoogle Scholar
  54. 54.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  55. 55.
    McKhann G, Drachman D, Folstein M et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–939.  https://doi.org/10.1212/WNL.34.7.939 CrossRefGoogle Scholar
  56. 56.
    Roth M, Tym E, Mountjoy CQ (1986) CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry 149:698–709.  https://doi.org/10.1192/bjp.149.6.698 CrossRefPubMedGoogle Scholar
  57. 57.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198.  https://doi.org/10.1016/0022-3956(75)90026-6 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  59. 59.
    SPSS Incorporation (2006) Statistical Package for Social Science (SPSS). Release version 14 Chicago (IL). In: SPSS Inc. http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000114&pid=S0365-0596201000010000300018&lng=pt. Accessed 12 Mar 2018
  60. 60.
    Bermejo-Bescós P, Martín-Aragón S, Jiménez-Aliaga K et al (2013) Processing of the platelet amyloid precursor protein in the mild cognitive impairment (MCI). Neurochem Res 38:1415–1423.  https://doi.org/10.1007/s11064-013-1039-7 CrossRefPubMedGoogle Scholar
  61. 61.
    Vassar R (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741.  https://doi.org/10.1126/science.286.5440.735 CrossRefPubMedGoogle Scholar
  62. 62.
    Marcinkiewicz M, Seidah NG (2000) Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and α-secretase ADAM10 in mouse and human brain. J Neurochem 75:2133–2143.  https://doi.org/10.1046/j.1471-4159.2000.0752133.x CrossRefPubMedGoogle Scholar
  63. 63.
    Yan R, Vassar R (2014) Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13:319–329.  https://doi.org/10.1016/S1474-4422(13)70276-X CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Herrera-Rivero M, Soto-Cid A, Hernández ME, Aranda-Abreu GE (2013) Tau, APP, NCT and BACE1 in lymphocytes through cognitively normal ageing and neuropathology. An Acad Bras Cienc 85:1489–1496.  https://doi.org/10.1590/0001-376520130013 CrossRefPubMedGoogle Scholar
  65. 65.
    Herrera-Rivero M, Elena Hernández-Aguilar M, Emiliano Aranda-Abreu G (2015) A strategy focused on MAPT, APP, NCSTN and BACE1 to build blood classifiers for Alzheimer’s disease. J Theor Biol 376:32–38.  https://doi.org/10.1016/j.jtbi.2015.03.039 CrossRefPubMedGoogle Scholar
  66. 66.
    Holsinger RMD, McLean CA, Beyreuther K et al (2002) Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann Neurol 51:783–786.  https://doi.org/10.1002/ana.10208 CrossRefPubMedGoogle Scholar
  67. 67.
    Yang L-B, Lindholm K, Yan R et al (2003) Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9:3–4.  https://doi.org/10.1038/nm0103-3 CrossRefPubMedGoogle Scholar
  68. 68.
    Fukumoto H (2002) β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59:1381.  https://doi.org/10.1001/archneur.59.9.1381 CrossRefPubMedGoogle Scholar
  69. 69.
    Ahmed RR, Holler CJ, Webb RL et al (2010) BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J Neurochem 112:1045–1053.  https://doi.org/10.1111/j.1471-4159.2009.06528.x CrossRefPubMedGoogle Scholar
  70. 70.
    Holsinger RMD, Lee JS, Boyd A et al (2006) CSF BACE1 activity is increased in CJD and Alzheimer disease versus other dementias. Neurology 67:710–712.  https://doi.org/10.1212/01.wnl.0000229925.52203.4c CrossRefPubMedGoogle Scholar
  71. 71.
    Verheijen JH, Huisman LGM, Van Lent N et al (2006) Detection of a soluble form of BACE-1 in human cerebrospinal fluid by a sensitive activity assay. Clin Chem 52:1168–1174.  https://doi.org/10.1373/clinchem.2006.066720 CrossRefPubMedGoogle Scholar
  72. 72.
    Zhong Z, Ewers M, Teipel S et al (2007) Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry 64:718.  https://doi.org/10.1001/archpsyc.64.6.718 CrossRefPubMedGoogle Scholar
  73. 73.
    Zetterberg H, Andreasson U, Hansson O et al (2008) Elevated Cerebrospinal Fluid BACE1 Activity in Incipient Alzheimer Disease. Arch Neurol 65:1102–1107.  https://doi.org/10.1001/archneur.65.8.1102 CrossRefPubMedGoogle Scholar
  74. 74.
    Mulder SD, van der Flier WM, Verheijen JH et al (2010) BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J Alzheimer’s Dis 20:253–260.  https://doi.org/10.3233/JAD-2010-1367 CrossRefGoogle Scholar
  75. 75.
    Vassar R, Kandalepas PC (2011) The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res Ther 3:20.  https://doi.org/10.1186/alzrt82 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Endres K, Deller T (2017) Regulation of alpha-secretase ADAM10 in vitro and in vivo: genetic, epigenetic, and protein-based mechanisms. Front Mol Neurosci 10:56.  https://doi.org/10.3389/fnmol.2017.00056 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kögel D, Deller T, Behl C (2012) Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp Brain Res 217:471–479.  https://doi.org/10.1007/s00221-011-2932-4 CrossRefPubMedGoogle Scholar
  78. 78.
    Edwards DR, Handsley MM, Pennington CJ (2009) The ADAM metalloproteinases. Mol Aspects Med 29:258–289CrossRefGoogle Scholar
  79. 79.
    Reiss K, Saftig P (2009) The A Disintegrin And Metalloprotease (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137.  https://doi.org/10.1016/j.semcdb.2008.11.002 CrossRefPubMedGoogle Scholar
  80. 80.
    Mathews PM, Cataldo AM, Kao BH et al (2000) Brain expression of presenilins in sporadic and early-onset, familial Alzheimer’s disease. Mol Med 6:878–891CrossRefGoogle Scholar
  81. 81.
    Borghi R, Piccini A, Barini E et al (2010) Upregulation of presenilin 1 in brains of sporadic, late-onset Alzheimer’s disease. J Alzheimer’s Dis 22:771–775.  https://doi.org/10.3233/JAD-2010-100729 CrossRefGoogle Scholar
  82. 82.
    Kakuda N, Shoji M, Arai H et al (2012) Altered γ-secretase activity in mild cognitive impairment and Alzheimer’s disease. EMBO Mol Med 4:344–352.  https://doi.org/10.1002/emmm.201200214 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Davidsson P, Bogdanovic N, Lannfelt L, Blennow K (2001) Reduced expression of amyloid precursor protein, presenilin-1 and rab3a in cortical brain regions in Alzheimer’s disease. Dement Geriatr Cogn Disord 12:243–250CrossRefGoogle Scholar
  84. 84.
    Verdile G, Gnjec A, Miklossy J et al (2004) Protein markers for Alzheimer disease in the frontal cortex and cerebellum. Neurology 63:1385–1392.  https://doi.org/10.1212/01.WNL.0000141848.45315.A6 CrossRefPubMedGoogle Scholar
  85. 85.
    Capell A, Beher D, Prokop S et al (2004) γ-secretase complex assembly within the early secretory pathway*.  https://doi.org/10.1074/jbc.M409106200 CrossRefGoogle Scholar
  86. 86.
    Bustos V, Pulina MV, Bispo A et al (2017) Phosphorylated Presenilin 1 decreases β-amyloid by facilitating autophagosome–lysosome fusion. Proc Natl Acad Sci USA 114:7148–7153.  https://doi.org/10.1073/pnas.1705240114 CrossRefPubMedGoogle Scholar
  87. 87.
    Pletscher A, Laubscher A (1980) Blood platelets as models for neurons: uses and limitations. J Neural Transm.  https://doi.org/10.1007/978-3-7091-8582-7_2 CrossRefGoogle Scholar
  88. 88.
    Freson K, Labarque V, Thys C et al (2007) What’s new in using platelet research? To unravel thrombopathies and other human disorders. Eur J Pediatr 166:1203–1210.  https://doi.org/10.1007/s00431-007-0543-7 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Catricala S, Torti M, Ricevuti G (2012) Alzheimer disease and platelets: how’s that relevant. Immun Ageing 9:20.  https://doi.org/10.1186/1742-4933-9-20 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Talib LL, Joaquim HP, Forlenza OV (2012) Platelet biomarkers in Alzheimer’s disease. World J psychiatry 2:95–101.  https://doi.org/10.5498/wjp.v2.i6.95 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Behari M, Shrivastava M (2013) Role of platelets in neurodegenerative diseases: a universal pathophysiology. Int J Neurosci 123:287–299.  https://doi.org/10.3109/00207454.2012.751534 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jessyka Maria de França Bram
    • 1
  • Leda Leme Talib
    • 1
  • Helena Passarelli Giroud Joaquim
    • 1
  • Tamires Alves Sarno
    • 1
  • Wagner Farid Gattaz
    • 1
  • Orestes Vicente Forlenza
    • 1
    Email author
  1. 1.Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de MedicinaUniversidade de Sao PauloSão PauloBrazil

Personalised recommendations