Surface morphology of the orbitofrontal cortex in individuals at risk of psychosis: a multicenter study

  • Mihoko Nakamura
  • Tsutomu Takahashi
  • Yoichiro Takayanagi
  • Daiki Sasabayashi
  • Naoyuki Katagiri
  • Atsushi Sakuma
  • Chika Obara
  • Shinsuke Koike
  • Hidenori Yamasue
  • Atsushi Furuichi
  • Mikio Kido
  • Yumiko Nishikawa
  • Kyo Noguchi
  • Kazunori Matsumoto
  • Masafumi Mizuno
  • Kiyoto Kasai
  • Michio Suzuki
Original Paper

Abstract

Changes in the surface morphology of the orbitofrontal cortex (OFC), such as a fewer orbital sulci and altered sulcogyral pattern of the ‘H-shaped’ orbital sulcus, have been reported in schizophrenia, possibly reflecting abnormal neurodevelopment during gestation. However, whether high-risk subjects for developing psychosis also exhibit these gross morphologic anomalies is not well documented. This multicenter MRI study from four scanning sites in Japan investigated the distribution of the number of intermediate and posterior orbital sulci, as well as the OFC sulcogyral pattern, in 125 individuals with an at-risk mental state (ARMS) [of whom 22 later developed psychosis (ARMS-P) and 89 did not (ARMS-NP)] and 110 healthy controls. The ARMS group as a whole had a significantly lower number of intermediate and posterior orbital sulci compared with the controls, which was associated with prodromal symptomatology. However, there was no group difference in OFC pattern distribution. The ARMS-P and -NP groups did not differ in OFC surface morphology. These results suggest that gross morphology of the OFC in high-risk subjects may at least partly reflect neurodevelopmental pathology related to vulnerability to psychosis.

Keywords

Orbitofrontal cortex Sulcogyral pattern Magnetic resonance imaging Multicenter High-risk Psychosis 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP26461739 to TT, JP26461738 to YT, JP24390281 to MS, JP16H06395, 16H06399, 16K21720, and 16H06280 to KK, the SENSHIN Medical Research Foundation [Psychiatry 16 (general): 2–30] to YT, and by the Health and Labour Sciences Research Grants for Comprehensive Research on Persons with Disabilities from the Japan Agency for Medical Research and Development (AMED) Grant Number 16dk0307029h0003 to MS, KM and MM The study was also supported in part by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from AMED Grant Number 17dm0207004h0004, UTokyo Center for Integrative Science of Human Behavior (CiSHuB), and by World Premier International Research Center Initiative (WPI), MEXT, Japan to KK. The funding agencies had no role in the design and conduct of the study, collection, management, analysis and interpretation of the data, or preparation, review and approval of the manuscript. The authors are grateful to the staff of the Consultation and Support Service in Toyama (CAST), Il Bosco of Toho University Omori Medical Center, Sendai At-risk Mental State and First Episode (SAFE) service, and the University of Tokyo Hospital for their assistance in the diagnostic and psychopathological assessments of the study participants.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest for any of the authors including any financial, personal or other relationships with other people or organizations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, our work.

References

  1. 1.
    Chiavaras MM, Petrides M (2000) Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 422:35–54CrossRefPubMedGoogle Scholar
  2. 2.
    Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176CrossRefPubMedGoogle Scholar
  3. 3.
    Cropley VL, Bartholomeusz CF, Wu P, Wood SJ, Proffitt T, Brewer WJ, Desmond PM, Velakoulis D, Pantelis C (2015) Investigation of orbitofrontal sulcogyral pattern in chronic schizophrenia. Psychiatry Res 234:280–283CrossRefPubMedGoogle Scholar
  4. 4.
    Takahashi T, Nakamura M, Nishikawa Y, Takayanagi Y, Furuichi A, Kido M, Sasabayashi D, Noguchi K, Suzuki M (2016) Decreased number of orbital sulci in schizophrenia spectrum disorders. Psychiatry Res 250:29–32CrossRefPubMedGoogle Scholar
  5. 5.
    Bartholomeusz CF, Whittle SL, Montague A, Ansell B, McGorry PD, Velakoulis D, Pantelis C, Wood SJ (2013) Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 44:168–177CrossRefPubMedGoogle Scholar
  6. 6.
    Chakirova G, Welch KA, Moorhead TW, Stanfield AC, Hall J, Skehel P, Brown VJ, Johnstone EC, Owens DG, Lawrie SM, McIntosh AM (2010) Orbitofrontal morphology in people at high risk of developing schizophrenia. Eur Psychiatry 25:366–372CrossRefPubMedGoogle Scholar
  7. 7.
    Nakamura M, Nestor PG, McCarley RW, Levitt JJ, Hsu L, Kawashima T, Niznikiewicz M, Shenton ME (2007) Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain 130:693–707CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nishikawa Y, Takahashi T, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Sasabayashi D, Noguchi K, Suzuki M (2016) Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum. Eur Arch Psychiatry Clin Neurosci 266:15–23CrossRefPubMedGoogle Scholar
  9. 9.
    Takayanagi Y, Takahashi T, Orikabe L, Masuda N, Mozue Y, Nakamura K, Kawasaki Y, Itokawa M, Sato Y, Yamasue H, Kasai K, Okazaki Y, Suzuki M (2010) Volume reduction and altered sulco-gyral pattern of the orbitofrontal cortex in first-episode schizophrenia. Schizophr Res 121:55–65CrossRefPubMedGoogle Scholar
  10. 10.
    Siever LJ, Davis KL (2004) The pathophysiology of schizophrenia disorders: perspective from the spectrum. Am J Psychiatry 161:398–413CrossRefPubMedGoogle Scholar
  11. 11.
    Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93CrossRefPubMedGoogle Scholar
  12. 12.
    Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60:21–32CrossRefPubMedGoogle Scholar
  13. 13.
    Yung AR, Phillips LJ, Yuen HP, McGorry PD (2004) Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophr Res 67:131–142CrossRefPubMedGoogle Scholar
  14. 14.
    Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69:220–229CrossRefPubMedGoogle Scholar
  15. 15.
    Nelson B, Yuen HP, Wood S, Lin A, Spiliotacopoulos D, Bruxner A, Broussard C, Simmons M, Foley DL, Brewer WJ, Francey SM, Amminger GP, Thompson A, McGorry PD, Yung AR (2013) Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiatry 70:793–802CrossRefPubMedGoogle Scholar
  16. 16.
    Yücel M, Wood SJ, Phillips LJ, Stuart GW, Smith DJ, Yung A, Velakoulis D, McGorry PD, Pantelis C (2003) Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. Br J Psychiatry 182:518–524CrossRefPubMedGoogle Scholar
  17. 17.
    Tepest R, Schwarzbach CJ, Krug B, Klosterkotter J, Ruhrmann S, Vogeley K (2013) Morphometry of structural disconnectivity indicators in subjects at risk and in age-matched patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 263:15–24CrossRefPubMedGoogle Scholar
  18. 18.
    Takahashi T, Wood SJ, Yung AR, Nelson B, Lin A, Yücel M, Phillips LJ, Nakamura Y, Suzuki M, Brewer WJ, Proffitt TM, McGorry PD, Velakoulis D, Pantelis C (2014) Altered depth of the olfactory sulcus in ultra high-risk individuals and patients with psychotic disorders. Schizophr Res 153:18–24CrossRefPubMedGoogle Scholar
  19. 19.
    Lavoie S, Bartholomeuz CF, Nelson B, Lin A, McGorry PD, Velakoulis D, Whittle SL, Yung AR, Pantelis C, Wood SJ (2014) Sulcogyral pattern and sulcal count of the orbitofrontal cortex in individuals at ultra high risk for psychosis. Schizophr Res 154:93–99CrossRefPubMedGoogle Scholar
  20. 20.
    Koike S, Takano Y, Iwashiro N, Satomura Y, Suga M, Nagai T, Natsubori T, Tada M, Nishimura Y, Yamasaki S, Takizawa R, Yahata N, Araki T, Yamasue H, Kasai K (2013) A multimodal approach to investigate biomarkers for psychosis in a clinical setting: the integrative neuroimaging studies in schizophrenia targeting for early intervention and prevention (IN-STEP) project. Schizophr Res 143:116–124CrossRefPubMedGoogle Scholar
  21. 21.
    Mizuno M, Suzuki M, Matsumoto K, Murakami M, Takeshi K, Miyakoshi T, Ito F, Yamazawa R, Kobayashi H, Nemoto T, Kurachi M (2009) Clinical practice and research activities for early psychiatric intervention at Japanese leading centres. Early Interv Psychiatry 3:5–9CrossRefPubMedGoogle Scholar
  22. 22.
    Yung AR, Phillips LJ, McGorry PD (2004) Treating schizophrenia in the prodromal phase. Taylor & Francis, LondonCrossRefGoogle Scholar
  23. 23.
    Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T, Ventura J, McFarlane W, Perkins DO, Pearlson GD, Woods SW (2003) Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability, and training to reliability. Schizophr Bull 29:703–715CrossRefPubMedGoogle Scholar
  24. 24.
    American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington, DCGoogle Scholar
  25. 25.
    Inada T, Inagaki A (2015) Psychotropic dose equivalence in Japan. Psychiatry Clin Neurosci 69:440–447CrossRefPubMedGoogle Scholar
  26. 26.
    Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372CrossRefPubMedGoogle Scholar
  27. 27.
    Ganella EP, Burnett A, Cheong J, Thompson D, Roberts G, Wood S, Lee K, Duff J, Anderson PJ, Pantelis C, Doyle LW, Bartholomeusz C, Victorian Infant Collaborative Study Group (2015) Abnormalities in orbitofrontal cortex gyrification and mental health outcomes in adolescents born extremely preterm and/or at an extremely low birth weight. Hum Brain Mapp 36:1138–1150CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Sescousse G, Amiez C, Dreher JC (2015) Local morphology predicts functional organization of experienced value signals in the human orbitofrontal cortex. J Neurosci 35:1648–1658CrossRefPubMedGoogle Scholar
  29. 29.
    Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318CrossRefPubMedGoogle Scholar
  30. 30.
    Schmidt A, Diwadkar VA, Smieskova R, Harrisberger F, Lang UE, McGuire P, Fusar-Poli P, Borgwardt S (2015) Approaching a network connectivity-driven classification of the psychosis continuum: a selective review and suggestions for future research. Front Hum Neurosci 8:1047CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang C, Ji F, Hong Z, Poh JS, Krishnan R, Lee J, Rekhi G, Keefe RS, Adcock RA, Wood SJ, Fornito A, Pasternak O, Chee MW, Zhou J (2016) Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol Med 46:2771–2783CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van der Meer L, Swart M, van der Velde J, Pijnenborg G, Wiersma D, Bruggeman R, Aleman A (2014) Neural correlates of emotion regulation in patients with schizophrenia and non-affected siblings. PLoS One 9:e99667CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R, North American Prodrome Longitudinal Study Consortium (2015) Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry 77:147–157CrossRefPubMedGoogle Scholar
  34. 34.
    Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288CrossRefPubMedGoogle Scholar
  35. 35.
    Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31:672–696CrossRefPubMedGoogle Scholar
  36. 36.
    Whittle S, Bartholomeusz C, Yücel M, Dennison M, Vijayakumar N, Allen NB (2014) Orbitofrontal sulcogyral patterns are related to temperamental risk for psychopathology. Soc Cogn Affect Neurosci 9:232–239CrossRefPubMedGoogle Scholar
  37. 37.
    Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315CrossRefPubMedGoogle Scholar
  38. 38.
    Moncrieff J, Leo J (2010) A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med 40:1409–1422CrossRefPubMedGoogle Scholar
  39. 39.
    Kobayashi H, Morita K, Takeshi K, Koshikawa H, Yamazawa R, Kashima H, Mizuno M (2009) Effects of aripiprazole on insight and subjective experience in individuals with an at-risk mental state. J Clin Psychopharmacol 29:421–425CrossRefPubMedGoogle Scholar
  40. 40.
    Watanabe H, Nakamura M, Ohno T, Itahashi T, Tanaka E, Ohta H, Yamada T, Kanai C, Iwanami A, Kato N, Hashimoto R (2014) Altered orbitofrontal sulcogyral patterns in adult males with high-functioning autism spectrum disorders. Soc Cogn Affect Neurosci 9:520–528CrossRefPubMedGoogle Scholar
  41. 41.
    Roppongi T, Nakamura M, Asami T, Hayano F, Otsuka T, Uehara K, Fujiwara A, Saeki T, Hayasaka S, Yoshida T, Shimizu R, Inoue T, Hirayasu Y (2010) Posterior orbitofrontal sulcogyral pattern associated with orbitofrontal cortex volume reduction and anxiety trait in panic disorder. Psychiatry Clin Neurosci 64:318–326CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mihoko Nakamura
    • 1
  • Tsutomu Takahashi
    • 1
  • Yoichiro Takayanagi
    • 1
  • Daiki Sasabayashi
    • 1
  • Naoyuki Katagiri
    • 2
  • Atsushi Sakuma
    • 3
  • Chika Obara
    • 3
  • Shinsuke Koike
    • 5
  • Hidenori Yamasue
    • 5
    • 6
  • Atsushi Furuichi
    • 1
  • Mikio Kido
    • 1
  • Yumiko Nishikawa
    • 1
  • Kyo Noguchi
    • 7
  • Kazunori Matsumoto
    • 3
    • 4
  • Masafumi Mizuno
    • 2
  • Kiyoto Kasai
    • 5
    • 8
  • Michio Suzuki
    • 1
  1. 1.Department of NeuropsychiatryUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
  2. 2.Department of NeuropsychiatryToho University School of MedicineTokyoJapan
  3. 3.Department of PsychiatryTohoku University HospitalSendaiJapan
  4. 4.Department of PsychiatryTohoku University Graduate School of MedicineSendaiJapan
  5. 5.Department of Neuropsychiatry, Graduate School of MedicineThe University of TokyoTokyoJapan
  6. 6.Department of PsychiatryHamamatsu University School of MedicineHamamatsuJapan
  7. 7.Department of RadiologyUniversity of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
  8. 8.International Research Center for Neurointelligence (WPI-IRCN), UTIASThe University of TokyoTokyoJapan

Personalised recommendations