Image quality of flat-panel computed tomography using 2 different acquisition times versus multidetector computed tomography in whole-head temporal bone specimen

  • Katrin ReimannEmail author
  • Bernhard Hirt
  • Maximilian Schulze



Imaging of temporal bone and skull base acquire high resolution due to the small anatomic structures with high clinical relevance. The purpose of this study was to compare image quality of the temporal bone in standard 20 s protocol flat-panel computed tomography (FPCT) with the new time- and dose improved 10 s protocol as well as with 128 slice multidetector computed tomography (MDCT). The aim was to evaluate the new time- and dose improved 10 s protocol.


10 whole-skull preparations—20 temporal bones—were scanned with either 128 slice MDCT CT (SOMATOM Definition AS + , Siemens, Erlangen) or FPCT (AXIOM-Artis, Siemens, Erlangen) using 10 s or 20 s protocol.


We show here that overall FPCT provides significantly better image quality and improved delimitation of clinically relevant structures in the temporal bone compared to 128 slice MDCT. Especially the shorter, dose saving 10 s protocol of the FPCT is still superior to 128 slice MDCT. The 20 s FPCT protocol was only significantly superior in identification of the cochlear apical turn and can thereby be used specifically in clinical cases with pathologies in this area.


The 10 s FPCT protocol yields a significantly better image quality than MDCT in imaging finer structures of the temporal bone.


Flat panel computed tomography Multidetector computed tomography Temporal bone Image quality 



We would like to thank the scientific assistants of the Institute of Clinical Anatomy and Cell Analysis, Tuebingen for their active support in handling and transporting the whole-head temporal bone specimen.


This work was supported by the Fortüne Program (University of Tuebingen, Tuebingen, Germany) under Grant 2339-0-0.

The authors state that accepted principles of ethical and professional conduct have been followed.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee of the medical faculty at the Eberhard Karls University Tuebingen, reference number: 371/2017BO2 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Anatomical specimens were obtained from the body donation program of the Institute of Clinical Anatomy and Cell Analysis of the University of Tuebingen with written permission of the donors.


  1. 1.
    Bartel-Friedrich S, Wulke C (2007) Classification and diagnosis of ear malformations. GMS Curr Top Otorhinolaryngol Head Neck Surg 6:05Google Scholar
  2. 2.
    Dalchow CV, Weber AL, Bien S, Yanagihara N, Werner JA (2006) Value of digital volume tomography in patients with conductive hearing loss. Eur Arch Oto-rhino-laryngol 263(2):92–99. CrossRefGoogle Scholar
  3. 3.
    Brancaccio R, Bettuzzi M, Morigi MP, Casali F, Ragazzini L (2015) Image quality and dose assessment in inner ear computed tomography imaging with a flat panel-based system. J Comput Assist Tomogr 39(2):232–239. CrossRefPubMedGoogle Scholar
  4. 4.
    Zaoui K, Kromeier J, Neudert M, Boedeker CC, Zahnert T, Laszig R, Offergeld C (2012) Flat panel CT following stapes prosthesis insertion: an experimental and clinical study. Eur Radiol 22(4):837–844. CrossRefPubMedGoogle Scholar
  5. 5.
    Kennedy TA, Connell N, Szczykutowicz T, Schafer S, Royalty K, Nace S, Gartrell B, Gubbels S (2016) Flat-panel CT for cochlear implant electrode imaging: comparison to multi-detector CT. Otol Neurotol 37(10):1646–1653. CrossRefPubMedGoogle Scholar
  6. 6.
    Jiam NT, Pearl MS, Carver C, Limb CJ (2016) Flat-panel CT imaging for individualized pitch mapping in cochlear implant users. Otol Neurotol 37(6):672–679. CrossRefPubMedGoogle Scholar
  7. 7.
    Conley DB, Tan B, Bendok BR, Batjer HH, Chandra R, Sidle D, Rahme RJ, Adel JG, Fishman AJ (2011) Comparison of Intraoperative portable CT scanners in skull base and endoscopic sinus surgery: single center case series. Skull Base 21(4):261–270. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rotter N, Schmitz B, Sommer F, Rohrer S, Schuler PJ, Bischof F, Scheithauer MO, Hoffmann TK (2017) First use of flat-panel computed tomography during cochlear implant surgery: perspectives for the use of advanced therapies in cochlear implantation. Hno 65(1):61–65. CrossRefPubMedGoogle Scholar
  9. 9.
    Kalender WA (2003) The use of flat-panel detectors for CT imaging. Radiologe 43(5):379–387. CrossRefPubMedGoogle Scholar
  10. 10.
    Obert M, Ahlemeyer B, Baumgart-Vogt E, Traupe H (2005) Flat-panel volumetric computed tomography: a new method for visualizing fine bone detail in living mice. J Comput Assist Tomogr 29(4):560–565CrossRefGoogle Scholar
  11. 11.
    Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28(7):2009–2022. CrossRefPubMedGoogle Scholar
  12. 12.
    Majdani O, Thews K, Bartling S, Leinung M, Dalchow C, Labadie R, Lenarz T, Heidrich G (2009) Temporal bone imaging: comparison of flat panel volume CT and multisection CT. AJNR Am J Neuroradiol 30(7):1419–1424. CrossRefPubMedGoogle Scholar
  13. 13.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefGoogle Scholar
  14. 14.
    Kolditz D, Struffert T, Kyriakou Y, Bozzato A, Dorfler A, Kalender WA (2012) Volume-of-interest imaging of the inner ear in a human temporal bone specimen using a robot- driven C-arm flat panel detector CT system. AJNR Am J Neuroradiol 33(10):E124–128. CrossRefPubMedGoogle Scholar
  15. 15.
    Bartling SH, Majdani O, Gupta R, Rodt T, Dullin C, Fitzgerald PF, Becker H (2007) Large scan field, high spatial resolution flat-panel detector based volumetric CT of the whole human skull base and for maxillofacial imaging. Dento Maxillo Fac Radiol 36(6):317–327. CrossRefGoogle Scholar
  16. 16.
    Pein MK, Brandt S, Plontke SK, Kosling S (2014) Visualization of subtle temporal bone structures comparison of cone beam CT and MDCT. Der Radiol 54(3):271–278. CrossRefGoogle Scholar
  17. 17.
    Saeed SR, Selvadurai D, Beale T, Biggs N, Murray B, Gibson P, Risi F, Boyd P (2014) The use of cone-beam computed tomography to determine cochlear implant electrode position in human temporal bones. Otol Neurotol 35(8):1338–1344. CrossRefPubMedGoogle Scholar
  18. 18.
    Bozzato A, Struffert T, Hertel V, Iro H, Hornung J (2010) Analysis of the accuracy of high-resolution computed tomography techniques for the measurement of stapes prostheses. Eur Radiol 20(3):566–571. CrossRefPubMedGoogle Scholar
  19. 19.
    Struffert T, Hertel V, Kyriakou Y, Krause J, Engelhorn T, Schick B, Iro H, Hornung J, Doerfler A (2010) Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol 130(4):443–452. CrossRefPubMedGoogle Scholar
  20. 20.
    Struffert T, Hauer M, Banckwitz R, Kohler C, Royalty K, Doerfler A (2014) Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol 24(6):1257–1265. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Geleijns J, Salvado Artells M, de Bruin PW, Matter R, Muramatsu Y, McNitt-Gray MF (2009) Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner. Phys Med Biol 54(10):3141–3159. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Flohr TG, Stierstorfer K, Suss C, Schmidt B, Primak AN, McCollough CH (2007) Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys 34(5):1712–1723. CrossRefPubMedGoogle Scholar
  23. 23.
    Leng S, Diehn FE, Lane JI, Koeller KK, Witte RJ, Carter RE, McCollough CH (2015) Temporal bone CT: improved image quality and potential for decreased radiation dose using an ultra-high-resolution scan mode with an iterative reconstruction algorithm. AJNR Am J Neuroradiol 36(9):1599–1603. CrossRefPubMedGoogle Scholar
  24. 24.
    Hempel JM, Niklas Bongers M, Braun K, Ernemann U, Bier G (2019) Noise reduction and image quality in ultra-high resolution computed tomography of the temporal bone using advanced modeled iterative reconstruction. Acta Radiol. CrossRefPubMedGoogle Scholar
  25. 25.
    Meyer M, Haubenreisser H, Raupach R, Schmidt B, Lietzmann F, Leidecker C, Allmendinger T, Flohr T, Schad LR, Schoenberg SO, Henzler T (2015) Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging. Eur Radiol 25(1):178–185. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryEberhard Karls University, TübingenTübingenGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital of Marburg, Philipps-Universität MarburgMarburgGermany
  3. 3.Institute of Clinical Anatomy and Cell AnalysisEberhard Karls University, TübingenTübingenGermany
  4. 4.Department of NeuroradiologyEberhard Karls University, TübingenTübingenGermany
  5. 5.Department of NeuroradiologyUniversity Hospital Marburg, Philipps-Universität MarburgMarburgGermany

Personalised recommendations