Expression levels of miR-34-family microRNAs are associated with TP53 mutation status in head and neck squamous cell carcinoma

  • Chanatip MetheetrairutEmail author
  • Chanticha Chotigavanich
  • Kanchana Amornpichetkul
  • Phawin Keskool
  • Sunun Ongard
  • Choakchai Metheetrairut
Head & Neck



The majority of head and neck squamous cell carcinoma (HNSCC) cases in developing countries are associated with cigarette smoking and TP53 mutations. p53 is a transcription factor that activates downstream genes, including the hsa-miR-34a and hsa-miR-34b/c loci, to achieve cell-cycle arrest, senescence, and/or apoptosis. This study examined the differences in expression levels of miR-34 in HNSCC with or without TP53 mutations.


We examined surgically resected tumor samples and normal adjacent tissues from HNSCC in oral cavity, larynx, and hypopharynx for TP53 mutations (exons 5–8) and miR-34 expression levels.


miR-34a, miR-34b, miR-34b*, and miR-34c are significantly up-regulated in tumors with wild-type TP53 genes (n = 23); while such up-regulation is not observed in tumors with mutant TP53 (n = 19). Although expression levels of miR-34-family miRNAs do not correlate with gender, age, or tumor staging, interestingly they are correlated with smoking status and tumor sites. miR-34b/b*/c are up-regulated in tumors from those who ever smoked or recently smoked (quit smoking less than 15 years ago); but such up-regulation was not seen in those who never smoked or quit smoking for at least 15 years. HNSCC of the oral cavity also up-regulated miR-34b/b*/c while no such overexpression was observed in HNSCC of the larynx and hypopharynx.


Surgically resected HNSCC samples with no TP53 mutations have elevated levels of miR-34a and miR-34b/b*/c, while those with TP53 mutations show no such up-regulation. miR-34b/b*/c expression is also correlated with smoking status and tumor sites.


Head and neck squamous cell carcinoma HNSCC MicroRNA MiR-34 TP53 



This research project was supported by Siriraj Research Fund, Grant Number (IO) R015832023, Faculty of Medicine Siriraj Hospital, Mahidol University. The authors would like to thank Dr. Arathaya Thianboonsong and Dr. Wannaporn Deetipprasert for clinical assistance and Thitima Auekit for pathological assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Informed consent was obtained from all individual participants included in the study. All procedures performed in this study involving human participants were in accordance with the ethical standards of the Declaration of Helsinki and approved by Siriraj Institutional Review Board (COA no. Si 424/2015).


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917. CrossRefPubMedGoogle Scholar
  2. 2.
    Cancer Genome Atlas N (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517(7536):576–582. CrossRefGoogle Scholar
  3. 3.
    Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5(5):423–428CrossRefPubMedGoogle Scholar
  4. 4.
    Rokavec M, Li H, Jiang L, Hermeking H (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6(3):214–230. CrossRefPubMedGoogle Scholar
  5. 5.
    Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12(5):414–418. CrossRefPubMedGoogle Scholar
  6. 6.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. CrossRefGoogle Scholar
  7. 7.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307. CrossRefPubMedGoogle Scholar
  8. 8.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. CrossRefPubMedGoogle Scholar
  9. 9.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19(6):1116–1122. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, Cai W, Chirino LM, Yang GR, Bronson R, Crowley DG, Sahay G, Schroeder A, Langer R, Anderson DG, Jacks T (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci USA 111(34):E3553–E3561. CrossRefPubMedGoogle Scholar
  12. 12.
    Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438. CrossRefPubMedGoogle Scholar
  13. 13.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245. CrossRefGoogle Scholar
  14. 14.
    Kress TR, Cannell IG, Brenkman AB, Samans B, Gaestel M, Roepman P, Burgering BM, Bushell M, Rosenwald A, Eilers M (2011) The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell 41(4):445–457. CrossRefPubMedGoogle Scholar
  15. 15.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) Method. Methods 25(4):402–408. CrossRefGoogle Scholar
  16. 16.
    Chen D, Cabay RJ, Jin Y, Wang A, Lu Y, Shah-Khan M, Zhou X (2013) MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res 4(1):e2. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105(15):5874–5878. CrossRefPubMedGoogle Scholar
  18. 18.
    Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J, Stano Kozubik K, Smardova J, Brychtova Y, Doubek M, Trbusek M, Mayer J, Pospisilova S (2009) miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23(6):1159–1163. CrossRefGoogle Scholar
  19. 19.
    Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, van Oers MH, Mertens D, Dohner H, Stilgenbauer S (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113(16):3801–3808. CrossRefGoogle Scholar
  20. 20.
    Dufour A, Palermo G, Zellmeier E, Mellert G, Duchateau-Nguyen G, Schneider S, Benthaus T, Kakadia PM, Spiekermann K, Hiddemann W, Braess J, Truong S, Patten N, Wu L, Lohmann S, Dornan D, GuhaThakurta D, Yeh RF, Salogub G, Solal-Celigny P, Dmoszynska A, Robak T, Montillo M, Catalano J, Geisler CH, Weisser M, Bohlander SK (2013) Inactivation of TP53 correlates with disease progression and low miR-34a expression in previously treated chronic lymphocytic leukemia patients. Blood 121(18):3650–3657. CrossRefGoogle Scholar
  21. 21.
    Dijkstra MK, van Lom K, Tielemans D, Elstrodt F, Langerak AW, van ‘t Veer MB, Jongen-Lavrencic M (2009) 17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation. Leukemia 23(3):625–627. CrossRefPubMedGoogle Scholar
  22. 22.
    Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Resnick RM, Cornelissen MT, Wright DK, Eichinger GH, Fox HS, ter Schegget J, Manos MM (1990) Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J Natl Cancer Inst 82(18):1477–1484CrossRefPubMedGoogle Scholar
  24. 24.
    Duddy PM, Hanby AM, Barnes DM, Camplejohn RS (2000) Improving the detection of p53 mutations in breast cancer by use of the FASAY, a functional assay. J Mol Diagn 2(3):139–144. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Erber R, Conradt C, Homann N, Enders C, Finckh M, Dietz A, Weidauer H, Bosch FX (1998) TP53 DNA contact mutations are selectively associated with allelic loss and have a strong clinical impact in head and neck cancer. Oncogene 16(13):1671–1679. CrossRefPubMedGoogle Scholar
  26. 26.
    de Anta JM, Jassem E, Rosell R, Martinez-Roca M, Jassem J, Martinez-Lopez E, Monzo M, Sanchez-Hernandez JJ, Moreno I, Sanchez-Cespedes M (1997) TP53 mutational pattern in Spanish and Polish non-small cell lung cancer patients: null mutations are associated with poor prognosis. Oncogene 15(24):2951–2958. CrossRefPubMedGoogle Scholar
  27. 27.
    Peltonen JK, Helppi HM, Paakko P, Turpeenniemi-Hujanen T, Vahakangas KH (2010) p53 in head and neck cancer: functional consequences and environmental implications of TP53 mutations. Head Neck Oncol 2:36. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sepehr A, Taniere P, Martel-Planche G, Zia’ee AA, Rastgar-Jazii F, Yazdanbod M, Etemad-Moghadam G, Kamangar F, Saidi F, Hainaut P (2001) Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene 20(50):7368–7374. CrossRefPubMedGoogle Scholar
  29. 29.
    Boonyaphiphat P, Pruegsanusak K, Thongsuksai P (2012) The prognostic value of p53, Bcl-2 and Bax expression in laryngeal cancer. J Med Assoc Thai 95(10):1317–1320PubMedGoogle Scholar
  30. 30.
    Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14(9):2588–2592. CrossRefPubMedGoogle Scholar
  31. 31.
    Ramdas L, Giri U, Ashorn CL, Coombes KR, El-Naggar A, Ang KK, Story MD (2009) miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck 31(5):642–654. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, Chiou SH, Lin SC, Chang KW (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70(4):1635–1644. CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Chen Y, Yu J, Liu G, Huang Z (2014) Integrated transcriptome analysis reveals miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics 104(4):249–256. CrossRefPubMedGoogle Scholar
  34. 34.
    Rentoft M, Fahlen J, Coates PJ, Laurell G, Sjostrom B, Ryden P, Nylander K (2011) miRNA analysis of formalin-fixed squamous cell carcinomas of the tongue is affected by age of the samples. Int J Oncol 38(1):61–69PubMedGoogle Scholar
  35. 35.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743. CrossRefPubMedGoogle Scholar
  37. 37.
    Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593. CrossRefPubMedGoogle Scholar
  38. 38.
    Izzotti A, Larghero P, Longobardi M, Cartiglia C, Camoirano A, Steele VE, De Flora S (2011) Dose–responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung. Mutat Res 717(1–2):9–16. CrossRefPubMedGoogle Scholar
  39. 39.
    Mascaux C, Laes JF, Anthoine G, Haller A, Ninane V, Burny A, Sculier JP (2009) Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 33(2):352–359. CrossRefPubMedGoogle Scholar
  40. 40.
    Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, Xu L (2008) Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 8:266. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  2. 2.Department of Otorhinolaryngology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  3. 3.Department of Pathology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations