European Archives of Oto-Rhino-Laryngology

, Volume 276, Issue 1, pp 167–173 | Cite as

Glottic configuration changes and outcomes of endoscopic arytenoid abduction lateropexy

  • László Szakács
  • Balázs SztanóEmail author
  • Vera Matievics
  • Zsófia Bere
  • Paul F. Castellanos
  • László Rovó



Endoscopic arytenoid abduction lateropexy (EAAL) is an effective glottis enlarging procedure for the treatment of bilateral vocal cord palsy (BVCP). The postoperative glottic configuration changes can be evaluated by modern, high-resolution, 3D image reconstructions. Functional results are described by spirometry as well as objective and subjective phoniatric tests.


Unilateral EAAL was performed in ten malignant thyroid gland tumor patients (eight women, two men), who had BVCP after thyroid surgery. Slicer 3D® software was used for morphometric analysis. Pre- and postoperative peak inspiratory flow (PIF) and standard phoniatric parameters were compared.


The glottic gap improved significantly (+ 60%). Significant improvement of PIF was found in all cases. Phoniatric tests revealed better quality of voice and patient satisfaction. Their voices changed from a severely impaired to a socially acceptable, almost normal, quality.


The results support our clinical observations that the ideal position of the lateralization sutures is the one which provides a physiological abduction position of the arytenoid cartilage. Considering these good results, the surgical indications for minimally invasive endoscopic arytenoid lateropexy may be extended.


Bilateral vocal cord palsy Endoscopic arytenoid abduction lateropexy 3D reconstruction 



No financial disclosure.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Human and animal rights statements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Rosenthal LH, Benninger MS, Deeb RH (2007) Vocal fold immobility: a longitudinal analysis of etiology over 20 years. Laryngoscope 117(10):1864–1870CrossRefGoogle Scholar
  2. 2.
    Gould WJ, Sataloff RT, Spiegel JR (1993) Voice surgery. Mosby-Year Book, St. LouisGoogle Scholar
  3. 3.
    Sapundzhiev N, Lichtenberger G, Eckel HE et al (2008) Surgery of adult bilateral vocal fold paralysis in adduction: history and trends. Eur Arch Otorhinolaryngol 265(12):1501–1514CrossRefGoogle Scholar
  4. 4.
    Tucker H (1987) The larynx. Thieme Medical Publishers, New YorkGoogle Scholar
  5. 5.
    Marie JP, Dehesdin D, Ducastelle T, Senant J (1989) Selective reinnervation of the abductor and adductor muscles of the canine larynx after recurrent nerve paralysis. Ann Otol Rhinol Laryngol 98(7 Pt 1):530–536CrossRefGoogle Scholar
  6. 6.
    Marina MB, Marie JP, Birchall MA (2011 Dec) Laryngeal reinnervation for bilateral vocal fold paralysis. Curr Opin Otolaryngol Head Neck Surg 19(6):434–438CrossRefGoogle Scholar
  7. 7.
    Zealear DL, Rainey CL, Herzon GD, Netterville JL (1996) Ossoff RH Electrical pacing of the paralyzed human larynx. Ann Otol Rhinol Laryngol 105(9):689–693CrossRefGoogle Scholar
  8. 8.
    Mueller AH (2011) Laryngeal pacing for bilateral vocal fold immobility. Curr Opin Otolaryngol Head Neck Surg 19(6):439–443CrossRefGoogle Scholar
  9. 9.
    Sellars I, Sellars S (1983) Cricoarytenoid joint structure and function. J Laryngol Otol 97:1027–1034CrossRefGoogle Scholar
  10. 10.
    Sztanó B, Szakács L, Madani S, Tóth F, Bere Z, Castellanos PF, Rovó L (2014) Comparison of endoscopic techniques designed for posterior glottic stenosis—a cadaver morphometric study. Laryngoscope 124:705–710CrossRefGoogle Scholar
  11. 11.
    Szakács L, Sztanó B, Matievics V, Bere Z, Bach A, Castellanos PF, Rovó L (2015) A comparison between transoral glottis-widening techniques for bilateral vocal fold immobility. Laryngoscope 125(11):2522–2529CrossRefGoogle Scholar
  12. 12.
    Vining DJ1, Liu K, Choplin RH, Haponik EF (1996) Virtual bronchoscopy. Relationships of virtual reality endobronchial simulations to actual bronchoscopic findings. Chest 109(2):549–553CrossRefGoogle Scholar
  13. 13.
    Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555CrossRefGoogle Scholar
  14. 14.
    Jacobson BH, Johnson A, Grywalski C, Silbergleit A, Jacobson G,. Benninger MS, Newman CW (1997) The voice handicap index (VHI) development and validation. Am J Speech Lang Pathol 6:66–70CrossRefGoogle Scholar
  15. 15.
    Liang BM, Lam DCL, Feng YL (2012) Clinical applications of lung function tests: a revisit. Respirology 17:611–619CrossRefGoogle Scholar
  16. 16.
    Rovó L, Venczel K, Torkos A, Majoros V, Sztanó B, Jóri J (2008) Endoscopic arytenoid lateropexy for isolated posterior glottic stenosis, Laryngoscope 118(9):1550–1555CrossRefGoogle Scholar
  17. 17.
    Rovó L, Madani S, Sztanó B, Majoros V, Smehák G, Szakács L, Jóri J (2010) A new thread guide instrument for endoscopic lateropexy. Laryngoscope 120(10):2002–20077CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Burke AJ, Vining DJ, McGuirt WF Jr, Postma G, Browne JD (2000) Evaluation of airway obstruction using virtual endoscopy. Laryngoscope 110(1):23–29CrossRefGoogle Scholar
  20. 20.
    Yunus M (2012) Helical CT scan with 2D and 3D reconstructions and virtual endoscopy versus conventional endoscopy in the assessment of airway disease in neonates, infants and children. J Pak Med Assoc 62(11):1154–1160Google Scholar
  21. 21.
    Gallivan RP1, Nguyen TH, Armstrong WB (1999) Head and neck computed tomography virtual endoscopy: evaluation of a new imaging technique. Laryngoscope 109(10):1570–1579CrossRefGoogle Scholar
  22. 22.
    König AH, Gröller E (2001) 3D medical visualization: breaking the limits of diagnostics and treatment. ERCIM News 44:27–8Google Scholar
  23. 23.
    Nain D (2002) an interactive virtual endoscopy tool with automatic path generation. Master’s thesis, MIT AI LabGoogle Scholar
  24. 24.
    Silverman PM, Zeiberg AS, Sessions RB, Troost TR, Zeman RK (1995) Three-dimensional imaging of the hypopharynx and larynx by means of helical (spiral) computed tomography. Comparison of radiological and otolaryngological evaluation. Ann Otol Rhinol Laryngol 104(6):425–431CrossRefGoogle Scholar
  25. 25.
    Toyota K, Uchida H, Ozasa H, Motooka A, Sakura S, Saito Y (2004) Preoperative airway evaluation using multi-slice three-dimensional computed tomography for a patient with severe tracheal stenosis. Br J Anaesth 93(6):865–867CrossRefGoogle Scholar
  26. 26.
    Triglia JM, Nazarian B, Sudre-Levillain I, Marciano S, Moulin G, Giovanni A (2002) Virtual laryngotracheal endoscopy based on geometric surface modeling using spiral computed tomography data. Ann Otol Rhinol Laryngol 111(1):36–43CrossRefGoogle Scholar
  27. 27.
    Loth A, Corny J, Santini L, Dahan L, Dessi P, Adalian P, Fakhry N (2015) Analysis of hyoid-larynx complex using 3D geometric morphometrics. Dysphagia 30(3):357–364CrossRefGoogle Scholar
  28. 28.
    Bakhshaee H, Moro C, Kost K, Mongeau L (2013) Three-dimensional reconstruction of human vocal folds and standard laryngeal cartilages using computed tomography scan data. J Voice 27(6):769–777CrossRefGoogle Scholar
  29. 29.
    Hiramatsu H, Tokashiki R, Suzuki M (2008) Usefulness of three-dimensional computed tomography of the larynx for evaluation of unilateral vocal fold paralysis before and after treatment: technique and clinical applications. Eur Arch Otorhinolaryngol 265(6):725–730CrossRefGoogle Scholar
  30. 30.
    Jóri J, Rovó L, Czigner J (1998) Vocal cord laterofixation as early treatment for acute bilateral abductor paralysis after thyroid surgery. Eur Arch Otorhinolaryngol 255:375–378CrossRefGoogle Scholar
  31. 31.
    Dennis DP, Kashima H (1989) Carbon dioxide laser posterior cordectomy for treatment of bilateral vocal cord paralysis. Ann Otol Rhinol Laryngol 98:930–934CrossRefGoogle Scholar
  32. 32.
    Kashima HK (1984) Documentation of upper airway obstruction in unilateral vocal cord paralysis: flow-volume loop studies in 43 subjects. Laryngoscope 94:923–937CrossRefGoogle Scholar
  33. 33.
    Cantarella G, Fasano V, Bucchioni E, Domenichini E, Cesana BM (2003) Spirometric and plethysmographic assessment of upper airway obstruction in laryngeal hemiplegia. Ann Otol Rhinol Laryngol 112(12):1014–1020CrossRefGoogle Scholar
  34. 34.
    Dursun G, Gokcan MK (2006) Aerodynamic, acoustic and functional results of posterior transverse laser cordotomy for bilateral abductor vocal fold paralysis. J Laryngol Otol 120(4):282–288CrossRefGoogle Scholar
  35. 35.
    Vössing M, Wassermann K, Eckel HE, Ebeling O (1995) Peak flow measurement in patients with laryngeal and tracheal stenoses. A simple and valuable spirometric method. HNO 43(2):70–75Google Scholar
  36. 36.
    Crumley RL (2000) Laryngeal synkinesis revisited. Ann Otol Rhinol Laryngol 109:365–371CrossRefGoogle Scholar
  37. 37.
    Werner JA, Lippert BM (2002) Laterofixation der Stimmlippe stat Tracheotomie bei akuter beidseitiger Stimmlippenparese. Dtsch Med Wochenschr 127:917–922CrossRefGoogle Scholar
  38. 38.
    Harnisch W, Brosch S, Schmidt M, Hagen R (2008) Breathing and voice quality after surgical treatment for bilateral vocal cord paralysis. Arch Otolaryngol Head Neck Surg 134(3):278–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology-Head and Neck SurgeryUniversity of SzegedSzegedHungary
  2. 2.Department of Otolaryngology-Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations