European Archives of Oto-Rhino-Laryngology

, Volume 276, Issue 1, pp 41–48 | Cite as

Normative data for static balance testing in healthy individuals using open source computerized posturography

  • Esther Domènech-VadilloEmail author
  • Gabriel Aguilera-Aguilera
  • Carmen Sánchez-Blanco
  • Ángel Batuecas-Caletrio
  • Carlos Guajardo
  • Nicolás Pérez
  • Gabriel Trinidad-Ruiz
  • Carlos Gimeno
  • Julio Rama
  • Marcos Rossi-Izquierdo
  • Elena San-Roman-Rodriguez
  • Berta Patiño-Castiñeira
  • Juan Manuel Espinosa-Sanchez
  • Eusebi Matiñó
  • Rafael Barona
  • Claudio Krstulovic
  • Jesús Benitez-Rosario
  • Elvira Santandreu
  • Francisco Carlos Zuma e Maia
  • María Guadalupe Álvarez-Morujo de Sande
  • Ariadna Valldeperes
  • Jorge Rey-Martínez



Computerized posturography is the gold standard for balance assessment. Because of the great cost and dimensions of commercial equipments, low-cost and portable devices have been developed and validated, such as RombergLab, a software in open source term which works connected with a low-cost force platform. The objective of this study was to obtain normative posturography data using this software.


A multicentric prospective and descriptive study, with 350 healthy participants, was designed. Static postural stability (measured using the modified clinical test of sensory interaction on balance) was evaluated using the software connected to the force platform. Using the confidence ellipse area (CEA) in each condition, global equilibrium score (GES) was calculated and adjusted for significant variable factors using cluster analysis.


Mean (SD) GES was 0.72 (0.22). Age (p < 0.01), height (p < 0.01) and recruitment center (p < 0.05) were found as influence factors for GES. Cluster analysis obtained 16 groups stratified by age and height. GES decreases with age and height (p < 0.005). No significant interaction of age nor height was found with GES in these clusters (p > 0.05). After correction for height and age, GES was no longer influenced by the recruitment center (p > 0.05).


With the introduction of the global equilibrium score values of the present study into the software, we consider RombergLab v1.3 a reference posturography tool for healthy individuals. Further studies are needed for validating it as a suitable instrumented test for screening between healthy and pathologic subjects and its reliability over time for the follow-up of patients.


Posturography Low-cost posturography Portable posturography Open source software Reference values 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

None of the authors had conflict of interest in relation with the study.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Sudarsky L (2001) Gait disorders: prevalence, morbidity, and etiology. Adv Neurol 87:111–117Google Scholar
  2. 2.
    Salzman B (2010) Gait and balance disorders in older adults. Am Fam Phys 82:61–69Google Scholar
  3. 3.
    Romberg MH (1846) Lehrbuch der Nervenkrankheiten des Menschen. Hirschwald, BerlinGoogle Scholar
  4. 4.
    Shumway-Cook A, Horak FB (1986) Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys Ther 66:1548–1550CrossRefGoogle Scholar
  5. 5.
    Horn LB, Scherer MR (2015) Measurement characteristics and clinical utility of the clinical test of sensory interaction on balance (CTSIB) and modified CTSIB in individuals with vestibular dysfunction. Arch Phys Med Rehabil 96:47–48. Google Scholar
  6. 6.
    Cohen H, Blatchly CA, Gombash L (1993) A study of the clinical test of sensory interaction and balance. Phys Ther 73:346–351CrossRefGoogle Scholar
  7. 7.
    Baloh RW, Angeles L, Furman JMR (1989) Modern vestibular function testing. West J Med 150:58–67Google Scholar
  8. 8.
    Clark RA, Bryant AL, Pua Y et al (2010) Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture. Google Scholar
  9. 9.
    Hubbard B, Pothier D, Hughes C, Rutka J (2012) A portable, low-cost system for posturography: a platform for longitudinal balance telemetry. J Otolaryngol Head Neck Surg 41:S31–S35. Google Scholar
  10. 10.
    Marchetti GF, Bellanca J, Whitney SL et al (2013) The development of an accelerometer-based measure of human upright static anterior-posterior postural sway under various sensory conditions: test–retest reliability, scoring and preliminary validity of the balance accelerometry measure (BAM). J Vestib Res Equilib Orientat 23:227–235. Google Scholar
  11. 11.
    Bartlett HL, Ting LH, Bingham JT (2014) Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 39:224–228. CrossRefGoogle Scholar
  12. 12.
    Leach JM, Mancini M, Peterka RJ et al (2014) Validating and calibrating the Nintendo Wii Balance Board to derive reliable center of pressure measures. Sensors (Switzerland) 14:18244–18267. CrossRefGoogle Scholar
  13. 13.
    Park D-S, Lee G (2014) Validity and reliability of balance assessment software using the Nintendo Wii Balance Board: usability and validation. J Neuroeng Rehabil 11:2–8. CrossRefGoogle Scholar
  14. 14.
    Scaglioni-Solano P, Aragón-Vargas LF (2014) Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults. Int J Rehabil Res 37:138–143. CrossRefGoogle Scholar
  15. 15.
    Pavan P, Cardaioli M, Ferri I et al (2014) A contribution to the validation of the Wii Balance Board for the assessment of standing balance. Eur J Sport Sci 15:600–605. CrossRefGoogle Scholar
  16. 16.
    Llorens R, Latorre J, Noé E, Keshner EA (2016) Posturography using the Wii Balance Board™. A feasibility study with healthy adults and adults post-stroke. Gait Posture 43:228–232. CrossRefGoogle Scholar
  17. 17.
    Levy SS, Thralls KJ, Kviatkovsky SA (2016) Validity and reliability of a portable balance tracking system, BTrackS, in older adults. J Geriatr Phys Ther. Google Scholar
  18. 18.
    Weaver TB, Ma C, Laing AC (2017) Use of the Nintendo Wii Balance Board for studying standing static balance control: Technical considerations, force-plate congruency, and the effect of battery life. J Appl Biomech 33:48–55. CrossRefGoogle Scholar
  19. 19.
    Zhu Y (2017) Design and validation of a low-cost portable device to quantify postural stability. Sensors (Switzerland) 17:1–12. Google Scholar
  20. 20.
    Rey-Martinez J, Pérez-Fernández N (2016) Open source posturography. Acta Otolaryngol 136:1225–1229. CrossRefGoogle Scholar
  21. 21.
    Turkey John W (1977) Exploratory data analysis. Addison Wesley, Reading, MassachusettsGoogle Scholar
  22. 22.
    Scoppa F, Capra R, Gallamini M, Shiffer R (2013) Clinical stabilometry standardization. Basic definitions—acquisition interval—sampling frequency. Gait Posture 37:290–292. CrossRefGoogle Scholar
  23. 23.
    Goble DJ, Cone BL, Fling BW (2014) Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”. J Neuroeng Rehabil 11:1–9. CrossRefGoogle Scholar
  24. 24.
    Clark RA, Mentiplay BF, Pua YH, Bower KJ (2018) Reliability and validity of the Wii Balance Board for assessment of standing balance: a systematic review. Gait Posture 61:40–54. CrossRefGoogle Scholar
  25. 25.
    NeuroCom Balance Manager (2016) Sensory Organitation Test. Natus Medical Incorporated. Accessed 13 Sept 2017
  26. 26.
    Chaudhry H, Bukiet B, Ji Z, Findley T (2011) Measurement of balance in computer posturography: comparison of methods—a brief review. J Bodyw Mov Ther 15:82–91. CrossRefGoogle Scholar
  27. 27.
    Freeman L, Gera G, Horak FB et al (2016) Instrumented test of sensory integration for balance. J Geriatr Phys Ther 23:1–8. Google Scholar
  28. 28.
    Carmona S, Zalazar G, D’albora R, Bordabehere G (2017) Portable posturography: validation of variables in people without posture and balance disorders. a pilot study. EC Neurol 6:3:132–136Google Scholar
  29. 29.
    Patel M, Fransson PA, Lush D, Gomez S (2008) The effect of foam surface properties on postural stability assessment while standing. Gait Posture 28:649–656. CrossRefGoogle Scholar
  30. 30.
    Chaikeeree N, Saengsirisuwan V, Chinsongkram B, Boonsinsukh R (2015) Interaction of age and foam types used in clinical test for sensory interaction and balance (CTSIB). Gait Posture 41:313–315. CrossRefGoogle Scholar
  31. 31.
    Liu B, Leng Y, Zhou R et al (2017) Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability. Acta Otolaryngol 0:1–6. Google Scholar
  32. 32.
    Wrisley DM, Stephens MJ, Mosley S et al (2007) Learning effects of repetitive administrations of the sensory organization test in healthy young adults. Arch Phys Med Rehabil 88:1049–1054. CrossRefGoogle Scholar
  33. 33.
    Rosengren KS, Rajendran K, Contakos J et al (2007) Changing control strategies during standard assessment using computerized dynamic posturography with older women. Gait Posture 25:215–221. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Esther Domènech-Vadillo
    • 1
    • 2
    Email author
  • Gabriel Aguilera-Aguilera
    • 3
  • Carmen Sánchez-Blanco
    • 3
  • Ángel Batuecas-Caletrio
    • 3
  • Carlos Guajardo
    • 4
  • Nicolás Pérez
    • 4
  • Gabriel Trinidad-Ruiz
    • 5
  • Carlos Gimeno
    • 6
  • Julio Rama
    • 7
  • Marcos Rossi-Izquierdo
    • 8
  • Elena San-Roman-Rodriguez
    • 8
  • Berta Patiño-Castiñeira
    • 8
  • Juan Manuel Espinosa-Sanchez
    • 9
  • Eusebi Matiñó
    • 10
  • Rafael Barona
    • 11
  • Claudio Krstulovic
    • 11
  • Jesús Benitez-Rosario
    • 12
  • Elvira Santandreu
    • 13
  • Francisco Carlos Zuma e Maia
    • 14
  • María Guadalupe Álvarez-Morujo de Sande
    • 15
  • Ariadna Valldeperes
    • 16
  • Jorge Rey-Martínez
    • 16
    • 17
  1. 1.Servei d’OtorrinolaringologiaHospital Universitari Joan XXIII de TarragonaTarragonaSpain
  2. 2.Institut d’Investigació Sanitària Pere VirgiliReusSpain
  3. 3.Servicio de ORL y CCCHospital Universitario de Salamanca, IBSALSalamancaSpain
  4. 4.Unidad de OtorrinolaringologíaClínica Universidad de NavarraPamplonaSpain
  5. 5.Unidad de OtorrinolaringologíaComplejo Hospitalario Universitario de BadajozBadajozSpain
  6. 6.Unidad de OtorrinolaringologíaClínica RotgerPalma de MallorcaSpain
  7. 7.Unidad de OtorrinolaringologíaHospital Universitari Son EspasesPalma de MallorcaSpain
  8. 8.Unidad de OtorrinolaringologíaHospital Universitario Lucus AugustiLugoSpain
  9. 9.Unidad de OtorrinolaringologíaHospital Universitario Virgen de las NievesGranadaSpain
  10. 10.Unidad de OtorrinolaringologíaHospital General de CatalunyaBarcelonaSpain
  11. 11.Unidad de OtorrinolaringologíaHospital Casa de la SaludValenciaSpain
  12. 12.Unidad de OtorrinolaringologíaHospital Universitario de Gran Canaria Dr. NegrínLas Palmas de Gran CanariaSpain
  13. 13.Unidad de RehabilitaciónComplejo Hospitario Universitario Insular-Materno InfantilLas Palmas de Gran CanariaSpain
  14. 14.Clinica MaiaCanoasBrazil
  15. 15.Unidad de OtorrinolaringologíaHospital Universitario Puerta del MarCádizSpain
  16. 16.Unidad de OtorrinolaringologíaHospital Universitario DonostiaSan SebastiánSpain
  17. 17.Unidad de OtorrinolaringologíaClínica Quirón DonostiaSan SebastiánSpain

Personalised recommendations