Archives of Gynecology and Obstetrics

, Volume 300, Issue 4, pp 1067–1082 | Cite as

The impact of the sepsis on female urogenital system: the role of pregabalin

  • Ilker GunyeliEmail author
  • Mustafa Saygin
  • Ozlem Ozmen
Gynecologic Endocrinology and Reproductive Medicine



The aim of the study was to investigate the oxidative damage and inflammatory effects of sepsis on the urogenital system in the Lipopolysaccharide (LPS)-induced sepsis model and ameliorating role of Pregabalin (PGB).


Twenty-four female Wistar Albino rats (12 months old) were divided into 3 groups as follows: Sepsis group (Group S) (5 mg/kg LPS, i.p, single dose); Sepsis+ PGB group (Group SP) (5 mg/kg LPS, i.p, single dose and 30 mg/kg PGB); Control group (Group C) (0.1 ml/oral and i.p. saline, single dose), 6 h after LPS administration, the animals were killed. Subsequently, analyses of urogenital tissue oxidant/antioxidant status, histopathological and immunohistochemical analyses were performed.


Total oxidative status (TOS) and oxidative stress index (OSI) values in the urogenital tissues were increased in Group S (Total anti-oxidative status (TAS) decreased) compared to the Control group (p < 0.05). PGB improved these values (p < 0.05). The immunohistochemical markers [Caspase-3, granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), Serum Amyloid A (SAA) and inducible nitric oxide synthase (iNOS)] were significantly increased in Group S except for bladder (p < 0.001). Statistically significant immunohistochemical positiveness was found only for IL-6 in urinary bladder, though all the others values were negative. With the administration of PGB (Group SP), the expressions of these immunoreactions were markedly decreased (p < 0.001).


These findings demonstrated that sepsis caused oxidative stress and inflammation in the urogenital tissues. We have revealed that PGB ameliorated tissue damage caused by sepsis.


Urogenital system Lps-induced rat sepsis Pregabalin 



The authors thank the participants of this study.

Author contributions

GI contributed in the literature search, project development, manuscript writing/editing, data collection and interpretation, experimental rat study, rat killing and revised the article; SM contributed in biochemical analysis, statistical analysis, rat killing; OO contributed in histopathological and immunohistochemical analyses, management data analysis, and statistical analysis.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest with respect to the authorship and publication of this article.


  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third ınternational consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K (2016) Assessment of global ıncidence and mortality of hospital-treated sepsis current estimates and limitations. Am J Respir Crit Care Med 193(3):259–272CrossRefPubMedGoogle Scholar
  3. 3.
    Marshall JC, Vincent JL, Guyatt G, Angus DC, Abraham E, Bernard G, Bombardier C, Calandra T, Jørgensen HS, Sylvester R, Boers M (2005) Outcome measures for clinical research in sepsis: a report of the 2nd Cambridge Colloquium of the International Sepsis Forum. Crit Care Med 33(8):1708–1716. CrossRefPubMedGoogle Scholar
  4. 4.
    Tsiotou AG, Sakorafas GH, Anagnostopoulos G, Bramis J (2005) Septic shock; current pathogenetic concepts from a clinical perspective. Med Sci Monit 11(3):76–85Google Scholar
  5. 5.
    Ding Y, Lin Y, Zhu T, Huang M, Xu Q (2014) Interleukin 6 increases dysfunction of organs in sepsis rats through sirtuin 1. Int J Clin Exp Med 7(9):2593–2598PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bozza FA, D’Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F (2013) Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 39(1):10–16. CrossRefPubMedGoogle Scholar
  7. 7.
    Perl M, Chung CS, Garber M, Huang X, Ayala A (2006) Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci 11:272–299. CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang HT, Tian EB, Chen YL, Deng HT, Wang QT (2015) Proteomic analysis for finding serum pathogenic factors and potential biomarkers in multiple myeloma. Chin Med J (Engl). CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Naffaa M, Makhoul BF, Tobia A, Kaplan M, Aronson D, Azzam ZS, Saliba W (2014) Procalcitonin and interleukin 6 for predicting blood culture positivity in sepsis. Am J Emerg Med 32:448–451. CrossRefPubMedGoogle Scholar
  10. 10.
    Kumar S, Gupta E, Srivastava VK, Kaushik S, Saxena J, Goyal LK, Mehta S, Jyoti A (2019) Nitrosative stress and cytokines are linked with the severity of sepsis and organ dysfunction. Br J Biomed Sci 76(1):29–34. CrossRefPubMedGoogle Scholar
  11. 11.
    Chousterman BG, Arnaud M (2018) Is there a role for hematopoietic growth factors during sepsis? Front Immunol 21(9):1015. CrossRefGoogle Scholar
  12. 12.
    Aşcı S, Demirci S, Aşcı H, Doğuç DK, Onaran İ (2016) Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med J 33(2):221–227. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Celik M, Kose A, Kose D, Karakus E, Akpinar E, Calik M, Dostbil A, Calikoglu C, Aksoy M, Ozel L (2015) The double-edged sword:effects of pregabalin on experimentally induced sciatic nervetransection and crush injury in rats. Int J Neurosci 125(11):845–854. CrossRefPubMedGoogle Scholar
  14. 14.
    Ha KY, Carragee E, Cheng I, Kwon SE, Kim YH (2011) Pregabalin as neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J Korean Med Sci 26(3):404–411. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    André V, Rigoulot MA, Koning E, Ferrandon A, Nehlig A (2003) Long term pregabalin treatment protects basal cortices and delays the occurrence of spontaneous seizures in the lithium-pilocarpine model in the rat. Epilepsia 44(7):893–903. CrossRefGoogle Scholar
  16. 16.
    Song Y, Jun JH, Shin EJ, Kwak YL, Shin JS, Shim JK (2017) Effect of pregabalin administration upon reperfusion in a rat model of hyperglycemic stroke: mechanistic insights associated with high-mobility group box 1. PLoS One 12(2):e0171147. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shamsi Meymandi M, Soltani Z, Sepehri G, Amiresmaili S, Farahani F, Moeini Aghtaei M (2018) Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury. Brain Res Bull 140:169–175. CrossRefPubMedGoogle Scholar
  18. 18.
    Ozmen O, Topsakal S (2019) Pregabalin ameliorates lipopolysaccharide-induced pancreatic inflammation in aged rats. Endocr Metab Immune Disord Drug Targets. CrossRefPubMedGoogle Scholar
  19. 19.
    Karube N, Ito S, Sako S, Hirokawa J, Yokoyama T (2017) Sedative effects of oral pregabalin premedication on intravenous sedation using propofol target-controlled infusion. J Anesth 31(4):586–592. CrossRefPubMedGoogle Scholar
  20. 20.
    Montgomery S, Chatamra K, Pauer L, Whalen E, Baldinetti F (2008) Efficacy and safety of pregabalin in elderly people with generalised anxiety disorder. Br J Psychiatry 193(5):389–394. CrossRefPubMedGoogle Scholar
  21. 21.
    Mathieson S, Kasch R, Maher CG, Pinto RZ, McLachlan AJ, Koes BW, Lin CC (2019) Combination drug therapy for the management of low back pain and sciatica: systematic review and meta-analysis. J Pain 20(1):1–15. CrossRefPubMedGoogle Scholar
  22. 22.
    Loutochin O, Al Afraa T, Campeau L, Mahfouz W, Elzayat E, Corcos J (2012) Effect of the anticonvulsant medications pregabalin and lamotrigine on urodynamic parameters in an animal model of neurogenic detrusor overactivity. Neurourol Urodyn 31(7):1197–1202. CrossRefPubMedGoogle Scholar
  23. 23.
    Imai A, Matsunami K, Takagi H, Ichigo S (2013) New generation nonhormonal management for hot flashes. Gynecol Endocrinol 29(1):63–66. CrossRefPubMedGoogle Scholar
  24. 24.
    Edwards L (2015) Vulvodynia. Clin Obstet Gynecol 58(1):143–152. CrossRefPubMedGoogle Scholar
  25. 25.
    Asgari Z, Rouholamin S, Nataj M, Sepidarkish M, Hosseini R, Razavi M (2017) Dose ranging effects of pregabalin on pain in patients undergoing laparoscopic hysterectomy: a randomized, double blinded, placebo controlled, clinical trial. J Clin Anesth 38:13–17. CrossRefPubMedGoogle Scholar
  26. 26.
    Di Cesare Mannelli L, Maresca M, Micheli L, Farina C, Scherz MW, Ghelardini C (2017) A rat model of FOLFOX-induced neuropathy: effects of oral dimiracetam in comparison with duloxetine and pregabalin. Cancer Chemother Pharmacol 80(6):1091–1103. CrossRefPubMedGoogle Scholar
  27. 27.
    Meymandi MS, Sepehri G, Abdolsamadi M, Shaabani M, Heravi G, Yazdanpanah O, Aghtaei MM (2017) The effects of co-administration of pregabalin and vitamin E on neuropathic pain induced by partial sciatic nerve ligation in male rats. Inflammopharmacology 25(2):237–246. CrossRefPubMedGoogle Scholar
  28. 28.
    Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285. CrossRefPubMedGoogle Scholar
  29. 29.
    Aslankoc R, Savran M, Ozmen O, Asci S (2018) Hippocampus and cerebellum damage in sepsis induced by lipopolysaccharide in aged rats - Pregabalin can prevent damage. Biomed Pharmacother 108:1384–1392. CrossRefPubMedGoogle Scholar
  30. 30.
    Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes IJ, Sarma JV, Lambris JD, Ward PA (2003) Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol 170(1):503–507. CrossRefPubMedGoogle Scholar
  31. 31.
    Rosengarten B, Wolff S, Klatt S, Schermuly RT (2009) Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Crit Care 13(4):R139. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, López RO, Ferreres J, Solé-Violán J, Labarta L, Díaz C, Palmero S, Jiménez A (2018) Sustained high serum caspase-3 concentrations and mortality in septic patients. Eur J Clin Microbiol Infect Dis 37(2):281–288. CrossRefPubMedGoogle Scholar
  33. 33.
    Metukuri MR, Reddy CM, Reddy PR, Reddanna P (2010) Bacterial LPS-mediated acute inflammation-induced spermatogenic failure in rats: role of stress response proteins and mitochondrial dysfunction. Inflammation 33(4):235–243. CrossRefPubMedGoogle Scholar
  34. 34.
    Yuan H, Huang J, Lv B, Yan W, Hu G, Wang J, Shen B (2013) Diagnosis value of the serum amyloid A test in neonatal sepsis: a meta-analysis. Biomed Res Int 2013:520294. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fu Y, Chen J, Cai B, Zhang JL, Li LX, Wang LL (2012) Diagnostic values of procalcitonin, interleukin-6, C reactive protein and serum amyloid A in sepsis. Sichuan Da Xue Xue Bao Yi Xue Ban 43(5):702–705PubMedGoogle Scholar
  36. 36.
    Takatani Y, Ono K, Suzuki H, Inaba M, Sawada M, Matsuda N (2018) Inducible nitric oxide synthase during the late phase of sepsis is associated with hypothermia and immune cell migration.Lab Invest 98(5):629–639. CrossRefPubMedGoogle Scholar
  37. 37.
    Kim J, Park EY, Kim O, Schilder JM, Coffey DM, Cho CH, Bast RC Jr (2018) Cell origins of high-grade serous ovarian cancer. Cancers (Basel). CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Gynaecology and Obstetrics, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Physiology, Faculty of MedicineSuleyman Demirel University IspartaIspartaTurkey
  3. 3.Department of Pathology, Faculty of Veterinary MedicineMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations