Advertisement

Archives of Gynecology and Obstetrics

, Volume 298, Issue 4, pp 755–761 | Cite as

Reconstructive breast surgery with partially absorbable bi-component Seragyn® BR soft mesh: an outcome analysis

  • Anna Machleidt
  • Nora Schmidt-Feuerheerd
  • Jens-Uwe Blohmer
  • Ralf Ohlinger
  • Janina Kueper
  • Gabriel von Waldenfels
  • Sissi Dittmer
  • Stefan Paepke
  • Evelyn Klein
General Gynecology

Abstract

Objective

Synthetic meshes and acellular dermal matrices are increasingly used in implant-based breast reconstruction. The objective of this study was to determine the incidence and severity of complications following the implantation of the partially absorbable bi-component soft mesh SERAGYN® BR and assess risk factors for adverse operative outcomes.

Methods

A retrospective clinical study was performed: The SERAGYN® BR soft mesh was utilized in 148 operations (skin-sparing mastectomy, nipple-sparing mastectomy, breast-conserving surgery, and secondary reconstruction after mastectomy) in four different institutions in Germany from June 2012 to February 2014. We analyzed whether the results were affected by tumor morphology (e.g., grading), patient characteristics and comorbidities, previous surgery or therapies, and use of alloplastic materials.

Results

The SERAGYN® BR soft mesh was successfully implanted in 131 of 148 operations. The rate of reconstructive failure was 11.5%. The most common complication was seroma (25.7%), followed by hematoma and skin infection (each 14.2%). Wound-healing issues were detected in 13.5% cases, secondary wound infections in 10.8%. 83.8% of operations had no severe complications. Independent predictors for reconstructive failure were wound-healing issues, nipple- or skin necrosis, wound- or skin infections, a high volume of excised tissue, hematomas, seromas, and sentinel lymph node excisions. A higher body mass index was correlated with a higher rate of infection.

Conclusion

SERAGYN® BR mesh can be used successfully in breast reconstructive surgery. Rates of major complications or reconstructive failure are comparable to the use of other synthetic or biological meshes.

Keywords

Breast Surgery Mesh Reconstruction Cancer 

Abbreviations

DIEP

Deep inferior epigastric perforators

ADM

Acellular dermal matrix

TRAM

Transverse rectus abdominis muscle

GCP

Good clinical practice

SLNE

Sentinel lymph node excision

LNE

Lymph node excision

Notes

Acknowledgements

We would like to thank all patients and investigators for the support.

Author contributions

Protocol/project development: S-FN, BJU, KE, and PS; data collection and management: S-FN and DS; data analysis: MA, S-FN, KJ, WG, DS, OR, KE, and PS; manuscript writing/editing: MA, S-FN, WG, BJU, KJ, DS, and OR.

Funding

Unrestricted financial grant by SERAG-WIESSNER.

Compliance with ethical standards

Conflict of interest

JU Blohmer, A Machleidt, J Kueper, N Schmidt-Feuerheerd, G von Waldenfels, S Dittmer, and E Klein no conflict of interest. Ohlinger S and Paepke S Honoraria and support for traveling expenses and training until 2015 by SERAG-WIESSNER GmbH & Co. KG, Naila, Germany.

References

  1. 1.
    Leitlinie S Mammakarzinom der Frau; Diagnostik, Therapie und Nachsorge; http://www.awmf.org/leitlinien/detail/ll/032-045OL.html. Accessed 16 Apr 2017
  2. 2.
    Uroskie TW, Colen LB (2004) History of breast reconstruction. Semin Plast Surg 18(2):65–69.  https://doi.org/10.1055/s-2004-829040 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marsh D, Patel NG, Rozen WM, Chowdhry MR, Sharma H, Ramakrishnan VV (2016) Three routine free flaps per day in a single operating theatre: principles of a process mapping approach to improving surgical efficiency. Gland Surg 5(2):107–114.  https://doi.org/10.3978/j.issn.2227-684x.2015.07.04 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Leitlinie Brustrekonstruktion mit Eigengewebe der German Society of Gynecology and obstetrics in cooperation with AWMF (Arbeitsgemeinschaften der wissenschaftlichen medizinischen Fachgesellschaften e.v.), S Leitlinie Stand 05/2015Google Scholar
  5. 5.
    Albornoz CR, Bach PB, Mehrara BJ, Disa JJ, Pusic AL, McCarthy CM, Cordeiro PG, Matros E (2013) A paradigm shift in US breast reconstruction: increasing implant rates. Plast Reconstr Surg 131(1):15–23.  https://doi.org/10.1097/prs.0b013e3182729cde CrossRefPubMedGoogle Scholar
  6. 6.
    Gerber B, Krause A, Dieterich M, Kundt G, Reimer T (2009) The oncological safety of skin sparing mastectomy with conservation of the nipple-areola complex and autologous reconstruction: an extended follow-up study. Ann Surg 249(3):461–468.  https://doi.org/10.1097/sla.0b013e31819a044f CrossRefPubMedGoogle Scholar
  7. 7.
    Dieterich M, Faridi A (2013) Biological matrices and synthetic meshes used in implant based breast reconstruction—a review of products available in Germany. Geburtshilfe Frauenheilkd 73(11):1100–1106.  https://doi.org/10.1055/s-0033-1350930 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ellis HL, Asaolu O, Nebo V, Abdul Kasem A (2016) Biological and synthetic mesh use in breast reconstructive surgery: a literature review. World J Surg Oncol.  https://doi.org/10.1186/s12957-016-0874-9 Published online 2016 Apr 21 CrossRefGoogle Scholar
  9. 9.
    Newman MI, Swartz KA, Samson MC, Mahoney CB, Diab K (2011) The true incidence of near-term postoperative complications in prosthetic breast reconstruction utilizing human acellular dermal matrices: a meta-analysis. Aesthetic Plast Surg 35(1):100–106.  https://doi.org/10.1007/s00266-010-9631-6 Epub 2010 Dec 24 CrossRefPubMedGoogle Scholar
  10. 10.
    Dieterich M, Reimer T, Dieterich H, Stubert J, Gerber B (2012) A short-term follow-up of implant based breast reconstruction using a titanium-coated polypropylene mesh (TiLoop(®) Bra). Eur J Surg Oncol 38(12):1225–1230.  https://doi.org/10.1016/j.ejso.2012.08.026 Epub 2012 Sep 13 CrossRefPubMedGoogle Scholar
  11. 11.
    Ho G, Nguyen TJ, Shahabi A, Hwang BH, Chan LS, Wong AK (2012) A systematic review and meta-analysis of complications associated with acellular dermal matrix-assisted breast reconstruction. Ann Plast Surg 68(4):346–356.  https://doi.org/10.1097/sap.0b013e31823f3cd9 CrossRefPubMedGoogle Scholar
  12. 12.
    Dieterich M, Stubert J, Gerber B, Reimer T, Richter DU (2015) Biocompatibility, cell growth and clinical relevance of synthetic meshes and biological matrixes for internal support in implant-based breast reconstruction. Arch Gynecol Obstet 291(6):1371–1379.  https://doi.org/10.1007/s00404-014-3578-9 Epub 2014 Dec 13 CrossRefPubMedGoogle Scholar
  13. 13.
  14. 14.
    Arbeitsgemeinschaft gynäkologische Onkologie: https://www.ago-online.de. Accessed 16 Apr 2017
  15. 15.
    Chun YS, Verma K, Rosen H et al (2010) Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plast Reconstr Surg 125:429–436CrossRefPubMedGoogle Scholar
  16. 16.
    Weichman KE, Wilson SC, Weinstein AL et al (2012) The use of acellular dermal matrix in immediate two-stage tissue expander breast reconstruction. Plast Reconstr Surg 129:1049–1058CrossRefPubMedGoogle Scholar
  17. 17.
    Salzberg CA, Dunavant C, Nocera N (2012) Immediate breast reconstruction using porcine acellular dermal matrix (Strattice): long-term outcomes and complications. J Plast Reconstr Aesthet Surg 66:323–328CrossRefPubMedGoogle Scholar
  18. 18.
    Peled AW, Foster RD, Garwood ER et al (2012) The effects of acellular dermal matrix in expander-implant breast reconstruction after total skin-sparing mastectomy: results of a prospective practice improvement study. Plast Reconstr Surg 129:901e–908eCrossRefPubMedGoogle Scholar
  19. 19.
    Kim JY, Davila AA, Persing S, Connor CM, Jovanovic B, Khan SA, Fine N, Rawlani V (2012) A meta-analysis of human acellular dermis and submuscular tissue expander breast reconstruction. Plast Reconstr Surg 129(1):28–41.  https://doi.org/10.1097/prs.0b013e3182361fd6 CrossRefPubMedGoogle Scholar
  20. 20.
    Ibrahim AM, Shuster M, Koolen PG, Kim K, Taghinia AH, Sinno HH, Lee BT, Lin SJ (2013) Analysis of the National Surgical Quality Improvement Program database in 19,100 patients undergoing implant-based breast reconstruction: complication rates with acellular dermal matrix. Plast Reconstr Surg 132(5):1057–1066.  https://doi.org/10.1097/prs.0b013e3182a3beec CrossRefPubMedGoogle Scholar
  21. 21.
    Dieterich M, Paepke S, Zwiefel K, Dieterich H, Blohmer J, Faridi A, Klein E, Gerber B, Nestle-Kraemling C (2013) Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases. Plast Reconstr Surg 132(1):8e–19e.  https://doi.org/10.1097/prs.0b013e318290f8a0 CrossRefPubMedGoogle Scholar
  22. 22.
    Becker H, Lind JG (2013) The use of synthetic mesh in reconstructive, revision, and cosmetic breast surgery. Aesthet Plast Surg 37(5):914–921.  https://doi.org/10.1007/s00266-013-0171-8 Published online 2013 Jul 17 CrossRefGoogle Scholar
  23. 23.
    ten Wolde B, van den Wildenberg FJ, Keemers-Gels ME, Polat F, Strobbe LJ (2014) Quilting prevents seroma formation following breast cancer surgery: closing the dead space by quilting prevents seroma following axillary lymph node dissection and mastectomy. Ann Surg Oncol 21(3):802–807.  https://doi.org/10.1245/s10434-013-3359-x Epub 2013 Nov 12 CrossRefPubMedGoogle Scholar
  24. 24.
    Madsen RJ, Esmonde NO, Ramsey KL, Hansen JE (2015) Axillary Lymph Node Dissection Is a Risk Factor for Major Complications After Immediate Breast Reconstruction. Ann Plast Surg.  https://doi.org/10.1097/sap.0000000000000653 [Epub ahead of print] PMID: 26545220 CrossRefPubMedGoogle Scholar
  25. 25.
    Chun YS, Verma K, Rosen H, Lipsitz S, Morris D, Kenney P, Eriksson E (2010) Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plast Reconstr Surg 125(2):429–436.  https://doi.org/10.1097/prs.0b013e3181c82d90 CrossRefPubMedGoogle Scholar
  26. 26.
    Ooi A, Song DH (2016) Reducing infection risk in implant-based breast-reconstruction surgery: challenges and solutions. Breast Cancer (Dove Med Press) 8:161–172.  https://doi.org/10.2147/bctt.s97764 CrossRefGoogle Scholar
  27. 27.
    Lanier ST, Wang ED, Chen JJ, Arora BP, Katz SM, Gelfand MA, Khan SU, Dagum AB, Bui DT (2010) The effect of acellular dermal matrix use on complication rates in tissue expander/implant breast reconstruction. Ann Plast Surg 64(5):674–678.  https://doi.org/10.1097/sap.0b013e3181dba892 CrossRefPubMedGoogle Scholar
  28. 28.
    McCarthy CM, Mehrara BJ, Riedel E, Davidge K, Hinson A, Disa JJ, Cordeiro PG (2008) Pusic AL Predicting complications following expander/implant breast reconstruction: an outcomes analysis based on preoperative clinical risk. Plast Reconstr Surg 121(6):1886–1892.  https://doi.org/10.1097/prs.0b013e31817151c4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna Machleidt
    • 1
  • Nora Schmidt-Feuerheerd
    • 2
  • Jens-Uwe Blohmer
    • 1
  • Ralf Ohlinger
    • 3
  • Janina Kueper
    • 1
  • Gabriel von Waldenfels
    • 1
  • Sissi Dittmer
    • 4
  • Stefan Paepke
    • 4
  • Evelyn Klein
    • 4
  1. 1.Breast CenterCharité-UniversitätsmedizinBerlinGermany
  2. 2.Martin-Luther-KrankenhausBerlinGermany
  3. 3.Universitätsmedizin GreifswaldGreifswaldGermany
  4. 4.Klinikum rechts der IsarMunichGermany

Personalised recommendations