Effect of propylene glycol on the skin penetration of drugs

  • Victor Carrer
  • Cristina AlonsoEmail author
  • Mercè Pont
  • Miriam Zanuy
  • Mònica Córdoba
  • Sonia Espinosa
  • Clara Barba
  • Marc A. Oliver
  • Meritxell Martí
  • Luisa Coderch
Original Paper


Propylene glycol (PG) has been used in formulations as a co-solvent and/or to enhance drug permeation through the skin from topical preparations. Two skin in vitro permeation approaches are used to determine the effect of PG on drug penetration. The in vitro Skin-PAMPA was performed using 24 actives applied in aqueous buffer or PG. PG modulates permeability by increasing or diminishing it in the compounds with poor or high permeability, respectively. Percutaneous absorption using pigskin on Franz diffusion cells was performed on seven actives and their commercial formulations. The commercial formulations evaluated tend to have a lower permeability than their corresponding PG solutions but maintain the compound distribution in the different strata: stratum corneum, epidermis and dermis. The results indicate the enhancer properties of PG for all compounds, especially for the hydrophilic ones. Additionally, the Synchrotron-Based Fourier Transform Infrared microspectroscopy technique is applied to study the penetration of PG and the molecular changes that the vehicle may promote in the different skin layers. Results showed an increase of the areas under the curve indicating the higher amount of lipids in the deeper layers and altering the lipidic order of the bilayer structure to a more disordered lipid structure.


Propylene glycol Percutaneous absorption PAMPA Franz cells µFTIR 



The present work could not be performed without the important collaboration and contribution of Isabel Yuste and Service of Dermocosmetic Assessment from IQAC-CSIC. The authors are also grateful to Monserrat Rigol and Núria Solanes from the Department of Cardiology (Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Hospital Clínic, Universitat de Barcelona, Spain) for supplying the porcine skin biopsies. Moreover, the work carried out in the synchrotron ALBA was possible thanks to the valuable help of M. Kreuzer and I. Yousef and the grant received from the Consortium for the Construction, Equipping and Exploitation of the Synchoton Light Sources (CELLS).


This work was partially funded by the Spanish Ministry of Economy and Competitiveness, project code RTC-2014-1901-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal handling was approved by the Institutional Review Board and Ethics Committee of Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. The management of the Landrace Large White pigs used in this study conforms to the Guide for the Care and Use of Laboratory Animals published by the United States National Institutes of Health (Eighth Edition. Washington, DC: The National Academies Press, 2011).

Informed consent

This study did not require formal informed consent.


  1. 1.
    Samaras EG, Riviere JE, Ghafourian T (2012) The effect of formulations and experimental conditions on in vitro human skin permeation—data from updated EDETOX database. Int J Pharm 434:280–291. CrossRefPubMedGoogle Scholar
  2. 2.
    Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56:603–618. CrossRefPubMedGoogle Scholar
  3. 3.
    Lane ME (2013) Skin penetration enhancers. Int J Pharm 447:12–21. CrossRefPubMedGoogle Scholar
  4. 4.
    Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hoelgaard A, Mollgard B (1985) Dermal drug delivery—improvement by choice of vehicle or drug derivative. J Control Release 2:111–120. CrossRefGoogle Scholar
  6. 6.
    Nicolazzo JC, Morgan TM, Reed BL, Finnin BC (2005) Synergistic enhancement of testosterone transdermal delivery. J Control Release 103:577–585. CrossRefPubMedGoogle Scholar
  7. 7.
    Manca ML, Castangia I, Matricardi P, Lampis S, Fernàndez-Busquets X, Fadda AM, Manconi M (2014) Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids Surf B Biointerfaces 117:360–367. CrossRefPubMedGoogle Scholar
  8. 8.
    Ostrenga J, Steinmetz C, Poulsen B, Yett S (1971) Significance of vehicle composition II. Prediction of optimal vehicle composition. J Pharm Sci 60:1180–1183. CrossRefPubMedGoogle Scholar
  9. 9.
    Bowstra JA, Peschier LJC, Brusee J, Boddé HE (1989) Effect of N-alkyl-azocycloheptan-2-ones including azone on the thermal behavior of human stratum corneum. J Pharm 52:47–54. CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Li P, Roberts MS (2011) Maximum transepidermal flux for similar size phenolic compounds is enhanced by solvent uptake into the skin. J Control Release 25;154(1):50–7. CrossRefGoogle Scholar
  11. 11.
    Bowstra JA, de Vries MA, Gooris GS, Bras W, Brussee J, Ponec M (1991) Thermodynamic and structural aspects of the skin barrier. J Control Release 15:209–219. CrossRefGoogle Scholar
  12. 12.
    Brinkmann I, Muller-Goymann CC (2005) An attempt to clarify the influence of glycerol, propylene glycol, isopropyl myristate and a combination of propylene glycol and isopropyl myristate on human stratum corneum. Pharmazie 60:215–220PubMedGoogle Scholar
  13. 13.
    Trottet L, Merly C, Mirza M, Hadgraft J, Davis AF (2004) Effect of finite doses of propylene glycol on enhancement of in vitro percutaneous permeation of loperamide hydrochloride. Int J Pharm 274:213–219. CrossRefPubMedGoogle Scholar
  14. 14.
    Pudney PD, Mélot M, Caspers PJ, Van Der Pol A, Puppels GJ (2007) An in vivo confocal Raman study of the delivery of trans retinol to the skin. Appl Spectrosc 61:804–811. CrossRefPubMedGoogle Scholar
  15. 15.
    Bonnist EY, Gorce JP, MacKay C, Pendlington RU, Pudney PD (2011) Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal raman spectroscopy. Skin Pharmacol Physiol 24:274–283. CrossRefPubMedGoogle Scholar
  16. 16.
    Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006) Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol 19:232–236. CrossRefPubMedGoogle Scholar
  17. 17.
    Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Rel 99:53–62. CrossRefGoogle Scholar
  18. 18.
    Narishetty ST, Panchagnula R (2004) Transdermal delivery system for zidovudine: in vitro, ex vivo and in vivo evaluation. Biopharm Drug Dispos 25:9–20. CrossRefPubMedGoogle Scholar
  19. 19.
    Yu XZ, Jin XP, Yin L, Shen GZ, Lin HF, Wang YL (1994) Influence of in vitro methods, receptor fluids on percutaneous absorption and validation of a novel in vitro method. Biomed Environ Sci 7:248–258PubMedGoogle Scholar
  20. 20.
    Dumas P, Miller L (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc 32:3–21. CrossRefGoogle Scholar
  21. 21.
    Cotte M, Dumas P, Besnard M, Tchoreloff P, Walter P (2004) Synchrotron FT-IR microscopic study of chemical enhancers in transdermal drug delivery: example of fatty acids. J Control Release 97:269–281. CrossRefPubMedGoogle Scholar
  22. 22.
    Manca ML, Matricardi P, Cencetti C, Peris JE, Melis V, Carbone C, Escribano E, Zaru M, Fadda AM, Manconi M (2016) Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm 505:204–211. CrossRefPubMedGoogle Scholar
  23. 23.
    Maibach H (1984) Dermatological formulations: percutaneous absorption. By Brian W. Barry. Marcel Dekker, 270 Madison Avenue, New York, NY 10016. 1983. 479 pp. 16 × 23.5 cm. J Pharm Sci 73: 573–573. CrossRefGoogle Scholar
  24. 24.
    Fitzpatrick D, Corish J, Hayes B (2004) Modelling skin permeability in risk assessment—the future. Chemosphere 55:1309–1314. CrossRefPubMedGoogle Scholar
  25. 25.
    Sinkó B, Kökösi J, Avdeef A, Takács-Novak K (2009) A PAMPA study of the permeability enhancing effect of new ceramide analogues. Chem Biodivers 6:1867–1874. CrossRefPubMedGoogle Scholar
  26. 26.
    Hoang KT (1992) Dermal exposure assessment : principles and applications. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, DC, EPA/600/8-91/011BGoogle Scholar
  27. 27.
    Gray GM, Yardley HJ (1975) Lipid compositions of cells isolated from pig, human, and rat epidermis. J Lipid Res 16:434–440PubMedGoogle Scholar
  28. 28.
    Wester RC, Melendres J, Sedik L, Maibach H, Riviere JE (1998) Percutaneous absorption of salicylic acid, theophylline, 2, 4-dimethylamine, diethyl hexyl phthalic acid, and p-aminobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicol Appl Pharmacol 151:159–165. CrossRefPubMedGoogle Scholar
  29. 29.
    Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, Sterry W, Lademann J (2007) Porcine ear skin: an in vitro model for human skin. Skin Res Technol 13:19–24. CrossRefPubMedGoogle Scholar
  30. 30.
    Wester RC, Maibach HI (2001) In vivo methods for percutaneous absorption measurements. J Toxicol Cut Ocular Toxicol 20:411–422. CrossRefGoogle Scholar
  31. 31.
    Ottaviani G, Martel S, Carrupt PA (2006) Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 49:3948–3954. CrossRefPubMedGoogle Scholar
  32. 32.
    Guidance document for the conduct of skin absorption studies. OECD Series on Testing and assessment, 2004; No. 28: 1–31,
  33. 33.
    European Commission the SCCS Notes of Guidance for the Testing of Cosmetic Ingredients (2016) SCCS 1564. 151,
  34. 34.
    Schaefer H, Redelmeier TE (1996) Skin barrier: principles of percutaneous absorption. Karger, BaselGoogle Scholar
  35. 35.
    Carrer V, Alonso C, Oliver MA, Coderch L (2018) In vitro penetration through the skin layers of topically applied glucocorticoids. Drug Test Anal 10:1528–1535. CrossRefPubMedGoogle Scholar
  36. 36.
    Bronaugh RL, Stewart RF, Congdon ER (1982) Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol Appl Pharmacol 62: 481–488. CrossRefGoogle Scholar
  37. 37.
    Benseny-Cases N, Álvarez-Marimon E, Castillo-Michel H, Cotte M, Falcon C, Cladera J (2018) Synchrotron-based Fourier transform infrared microspectroscopy (μFTIR) study on the effect of Alzheimer’s Aβ amorphous and fibrillar aggregates on PC12 cells. Anal Chem 90:2772–2779. CrossRefGoogle Scholar
  38. 38.
    AS, CAMO SOFTWARE. Accessed 20 Nov 2018
  39. 39.
    Vyumvuhore R, Tfayli A, Manfait M, Baillet-Guffroy A (2014) Vibrational spectroscopy coupled to classical least square analysis, a new approach for determination of skin moisturizing agents’ mechanisms. Skin Res Technol 20:282–292. CrossRefPubMedGoogle Scholar
  40. 40.
    Alonso C, Carrer V, Espinosa S, Zanuy M, Córdoba M, Vidal B, Domínguez MJ, Godessart N, Coderch L, Pont M (2019) Prediction of the skin permeability of topical drugs using in silico and in vitro models. Eur J Pharm Sci 136:104945. CrossRefPubMedGoogle Scholar
  41. 41.
    Davis AF, Hadgraft J (1991) Efect of supersaturation on membrane transport: 1. Hydrocortisone acetate. Int J Pharm 76:1–8. CrossRefGoogle Scholar
  42. 42.
    Lazar A, Lenkey N, Pesti K, Fodor L, Mike A (2015) Different pH-sensitivity patterns of 30 sodium channel inhibitors suggest chemically different pools along the access pathway. Front Pharmacol 6:210. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120. CrossRefPubMedGoogle Scholar
  44. 44.
    Golden GM, Guzek DB, Harris RR, McKie JE, Potts RO (1986) Lipid thermotropic transitions in human stratum corneum. J Invest Dermatol 86: 255–259. CrossRefGoogle Scholar
  45. 45.
    Olsztyńska-Janus S, Pietruszka A, Kiełbowicz Z, Czarnecki MA (2018) ATR-IR study of skin components: lipids, proteins and water. Part I: temperature effect. Spectrochim Acta A Mol Biomol Spectrosc 188: 37–49. CrossRefGoogle Scholar
  46. 46.
    van Smeden J, Bouwstra JA (2016) Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. In: Agner T (eds), Skin barrier function. Curr Probl Dermatol. Basel, Karger 49:8–26.
  47. 47.
    Rodríguez G, Barbosa-Barros L, Rubio L, Cócera M, Díez A, Estelrich J, Pons R, Caelles J, De la Maza A, López O (2009) Conformational changes in stratum corneum lipids by effect of Bicellar systems. Langmuir 25:10595–10603. CrossRefPubMedGoogle Scholar
  48. 48.
    Moghadam SH, Saliaj E, Wettig SD, Dong C, Ivanova MV, Huzi JTL, Foldvari M (2013) Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol Pharm 10:2248–2260. CrossRefPubMedGoogle Scholar
  49. 49.
    Goodman M, Barry BW (1988) Action of penetration enhancers on human skin as assessed by the permeation of model drugs 5-fluorouracil and estradiol. I. Infinite dose technique. J Invest Dermatol 91:323–327. CrossRefPubMedGoogle Scholar
  50. 50.
    Barry BW, Bennett SL (1987) Effect of penetration enhancers on the permeation of mannitol, hydrocortisone and progesterone through human skin. J Pharm Pharmacol 39:535–546. CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang J, Liu M, Jin H, Deng L, Xing J, Dong A (2010) In vitro enhancement of lactate esters on the percutaneous penetration of drugs with different lipophilicity. AAPS PharmSciTech 11:894–903. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen M, Liu X, Fahr A (2011) Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems. In vitro study with finite and infinite dosage application. Int J Pharm 408:223–234. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Victor Carrer
    • 1
  • Cristina Alonso
    • 1
    Email author
  • Mercè Pont
    • 2
  • Miriam Zanuy
    • 2
  • Mònica Córdoba
    • 2
  • Sonia Espinosa
    • 2
  • Clara Barba
    • 1
  • Marc A. Oliver
    • 1
  • Meritxell Martí
    • 1
  • Luisa Coderch
    • 1
  1. 1.Institute of Advanced Chemistry of Catalonia-CSIC (IQAC-CSIC)BarcelonaSpain
  2. 2.Almirall R&D CenterSant Feliu de Llobregat, BarcelonaSpain

Personalised recommendations