In silico analysis of gene expression data from bald frontal and haired occipital scalp to identify candidate genes in male androgenetic alopecia

  • A. Premanand
  • B. Reena RajkumariEmail author
Original Paper


Androgenetic alopecia (AGA) is a progressive dermatological disorder of frontal and vertex scalp hair loss leading to baldness in men. This study aimed to identify candidate genes involved in AGA through an in silico search strategy. The gene expression profile GS36169, which contains microarray gene expression data from bald frontal and haired occipital scalps of five men with AGA, was downloaded from the Gene Expression Omnibus (GEO) database. The differential gene expression analysis for all five subjects was carried out separately by PUMA package in R and identified 32 differentially expressed genes (DEGs) common to all five subjects. Gene ontology (GO) biological process and pathway- enrichment analyses of the DEGs were conducted separately for the up-regulated and down-regulated genes. ReactomeFIViz app was utilized to construct the protein functional interaction network for the DEGs. Through GO biological process and pathway analysis on the clusters of the Reactome FI network, we found that the down-regulated DEGs participate in Wnt signaling, TGF-beta signaling, and up-regulated DEGs participate in oxidative-stress- related pathways.


Androgenetic alopecia Differential gene expression Functional interaction network Gene ontology Wnt β-catenin signaling Transforming growth factor-β signaling Deleted in azoospermia 1 Hair growth 



Hemoglobin subunit alpha 1


Hemoglobin subunit beta


CD163 molecule


Jun proto-oncogene


Psoriasis susceptibility 1 candidate 2


Prostaglandin D2 synthase


Leucine-rich repeat containing G-protein-coupled receptor 5


Natriuretic peptide A


Corin serine peptidase


Ribosomal protein S27a


E1A binding protein p300


Cartilage oligomeric matrix protein


BMP and activin membrane bound inhibitor


Fibroblast growth factor 18


Ubiquitin C


Speckle type BTB/POZ protein


DAZ interacting zinc finger protein 1


Deleted in azoospermia 1


Keratin 7


Keratin 86


Keratin 16


Keratin 35


Keratin 33A


Keratin 83


Keratin 32


Keratin 31


Keratin 85


Keratin 2






Keratin 75


Keratin 81


Keratin 33B


Late cornified envelope 4A


Keratin-associated protein 10-8


Keratin-associated protein 4-7


Keratin-associated protein 10-5


Keratin-associated protein 2-3



The author A. Premanand acknowledges the financial support provided through Junior Research Fellowship by the Council of Scientific and Industrial Research, New Delhi, India (Award No: 09/844(0045)/2017-EMR-I). The author B. Reena Rajkumari acknowledges the seed grant provided by Vellore Institute of Technology, Vellore.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No original data are collected for this analysis, hence this study did not meet the criteria for ethical approval and formal consent is not required.

Supplementary material

403_2019_1973_MOESM1_ESM.pdf (248 kb)
Supplementary file1 (PDF 248 kb)
403_2019_1973_MOESM2_ESM.pdf (1.5 mb)
Supplementary file2 (PDF 1492 kb)
403_2019_1973_MOESM3_ESM.pdf (128 kb)
Supplementary file3 (PDF 127 kb)
403_2019_1973_MOESM4_ESM.pdf (106 kb)
Supplementary file4 (PDF 106 kb)
403_2019_1973_MOESM5_ESM.pdf (1.1 mb)
Supplementary file5 (PDF 1076 kb)
403_2019_1973_MOESM6_ESM.pdf (597 kb)
Supplementary file6 (PDF 596 kb)
403_2019_1973_MOESM7_ESM.pdf (112 kb)
Supplementary file7 (PDF 112 kb)


  1. 1.
    Abbas-Zadeh S, Mlitz V, Lachner J, Golabi B, Mildner M, Pammer J, Tschachler E, Eckhart L (2017) Phylogenetic profiling and gene expression studies implicate a primary role of PSORS1C2 in terminal differentiation of keratinocytes. Exp Dermatol 26:352–358. CrossRefGoogle Scholar
  2. 2.
    Ariza-de-Schellenberger A, Horland R, Rosowski M, Paus R, Lauster R, Lindner G (2011) Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles. Exp Dermatol 20:361–366. CrossRefGoogle Scholar
  3. 3.
    Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. CrossRefGoogle Scholar
  4. 4.
    Cash TF (1999) The psychosocial consequences of androgenetic alopecia: a review of the research literature. Br J Dermatol 141:398–405. CrossRefGoogle Scholar
  5. 5.
    Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–311. CrossRefGoogle Scholar
  6. 6.
    Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D'Eustachio P (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–477. CrossRefGoogle Scholar
  7. 7.
    De Vet EC, Aguado B, Campbell RD (2003) Adaptor signalling proteins Grb2 and Grb7 are recruited by human G6f, a novel member of the immunoglobulin superfamily encoded in the MHC. Biochem J 375:207–213. CrossRefGoogle Scholar
  8. 8.
    Dey-Rao R, Sinha AA (2017) Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia. Data Brief 13:85–87. CrossRefGoogle Scholar
  9. 9.
    Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L, Hermjakob H, D'Eustachio P (2016) The Reactome pathway Knowledgebase. Nucleic Acids Res 44:D481–487. CrossRefGoogle Scholar
  10. 10.
    Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y (2016) Comparative transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats. PLoS ONE 11:e0151118–e0151118. CrossRefGoogle Scholar
  11. 11.
    Garza LA, Liu Y, Yang Z, Alagesan B, Lawson JA, Norberg SM, Loy DE, Zhao T, Blatt HB, Stanton DC, Carrasco L, Ahluwalia G, Fischer SM, Fitz GA, Cotsarelis G (2012) Prostaglandin D(2) inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med 4:126ra134. CrossRefGoogle Scholar
  12. 12.
    Gokalp H (2017) Psychosocial Aspects of Hair Loss. In: Kutlubay Z, Serdaroglu S (eds) Hair and Scalp Disorders. InTech, Rijeka, p 13. 10.5772/66156.Google Scholar
  13. 13.
    Haegebarth A, Clevers H (2009) Wnt signaling, Lgr5, and stem cells in the intestine and skin. Am J Pathol 174:715–721. CrossRefGoogle Scholar
  14. 14.
    Inoue S, Nambu T, Shimomura T (2004) The RAIG family member, GPRC5D, is associated with hard-keratinized structures. J Invest Dermatol 122:565–573. CrossRefGoogle Scholar
  15. 15.
    Jain R, De-Eknamkul W (2014) Potential targets in the discovery of new hair growth promoters for androgenic alopecia. Expert Opin Ther Targets 18:787–806. CrossRefGoogle Scholar
  16. 16.
    Kaufman KD, Girman CJ, Round EM, Johnson-Levonas AO, Shah AK, Rotonda J (2008) Progression of hair loss in men with androgenetic alopecia (male pattern hair loss): long-term (5-year) controlled observational data in placebo-treated patients. Eur J Dermatol 18:407–411. Google Scholar
  17. 17.
    Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, Imamura T (2005) Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol 124:877–885. CrossRefGoogle Scholar
  18. 18.
    Kimura-Ueki M, Oda Y, Oki J, Komi-Kuramochi A, Honda E, Asada M, Suzuki M, Imamura T (2012) Hair Cycle Resting Phase Is Regulated by Cyclic Epithelial FGF18 Signaling. J Investig Dermatol 132:1338–1345. CrossRefGoogle Scholar
  19. 19.
    Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW (2008) Specific citrullination causes assembly of a globular S100A3 homotetramer: a putative Ca2+ modulator matures human hair cuticle. J Biol Chem 283:5004–5013. CrossRefGoogle Scholar
  20. 20.
    Kranz D (2011) Young men's coping with androgenetic alopecia: acceptance counts when hair gets thinner. Body Image 8:343–348. CrossRefGoogle Scholar
  21. 21.
    Langbein L, Schweizer J (2005) Keratins of the human hair follicle. Int Rev Cytol 243:1–78. CrossRefGoogle Scholar
  22. 22.
    Lin Z, Gao C, Ning Y, He X, Wu W, Chen Y-G (2008) The Pseudoreceptor BMP and activin membrane-bound inhibitor positively modulates Wnt/β-catenin signaling. J Biol Chem 283:33053–33058. CrossRefGoogle Scholar
  23. 23.
    Liu X, Gao Z, Zhang L, Rattray M (2013) puma 30: improved uncertainty propagation methods for gene and transcript expression analysis. BMC Bioinform 14:39. CrossRefGoogle Scholar
  24. 24.
    Lu Z, Fischer TW, Hasse S, Sugawara K, Kamenisch Y, Krengel S, Funk W, Berneburg M, Paus R (2009) Profiling the response of human hair follicles to ultraviolet radiation. J Investig Dermatol 129:1790–1804. CrossRefGoogle Scholar
  25. 25.
    Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 35:D26–31. CrossRefGoogle Scholar
  26. 26.
    Miao Y, Qu Q, Jiang W, Liu X-M, Shi P-L, Fan Z-X, Du L-J, Wang G-F, Liu X-N, Guo Z-H, Liu Y, Liu F, Liu Y-R, Hu Z-Q (2017) Identification of functional patterns of androgenetic alopecia using transcriptome profiling in distinct locations of hair follicles. J Investig Dermatol. Google Scholar
  27. 27.
    Michel L, Reygagne P, Benech P, Jean-Louis F, Scalvino S, So SLK, Hamidou Z, Bianovici S, Pouch J, Ducos B, Bonnet M, Bensussan A, Patatian A, Lati E, Wdzieczak-Bakala J, Choulot JC, Loing E, Hocquaux M (2017) Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways. Br J Dermatol 177:1322–1336. CrossRefGoogle Scholar
  28. 28.
    Nelson AM, Loy DE, Lawson JA, Katseff AS, Fitzgerald GA, Garza LA (2013) Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44. J Invest Dermatol 133:881–889. CrossRefGoogle Scholar
  29. 29.
    Pearson RD, Liu X, Sanguinetti G, Milo M, Lawrence ND, Rattray M (2009) puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinform 10:211. CrossRefGoogle Scholar
  30. 30.
    Ponnala L, Wang Y, Sun Q, van Wijk KJ (2014) Correlation of mRNA and protein abundance in the developing maize leaf. Plant J 78:424–440. CrossRefGoogle Scholar
  31. 31.
    Premanand A, Reena Rajkumari B (2018) Androgen modulation of Wnt/β-catenin signaling in androgenetic alopecia. Arch Dermatol Res 310:391–399. CrossRefGoogle Scholar
  32. 32.
    Randall VA (2010) Molecular basis of androgenetic alopecia. In: Trüeb RM, Tobin DJ (eds) Aging hair. Springer, Berlin, Heidelberg, pp 9–24. 10.1007/978-3-642-02636-2_2.Google Scholar
  33. 33.
    Rishikaysh P, Dev K, Diaz D, Qureshi WMS, Filip S, Mokry J (2014) Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci 15:1647–1670. CrossRefGoogle Scholar
  34. 34.
    Rogers MA, Langbein L, Praetzel-Wunder S, Winter H, Schweizer J (2006) Human hair keratin-associated proteins (KAPs). Int Rev Cytol 251:209–263. CrossRefGoogle Scholar
  35. 35.
    Sekiya T, Oda T, Matsuura K, Akiyama T (2004) Transcriptional regulation of the TGF-β pseudoreceptor BAMBI by TGF-β signaling. Biochem Biophys Res Commun 320:680–684. CrossRefGoogle Scholar
  36. 36.
    Shi Y, Luo L-F, Liu X-M, Zhou Q, Xu S-Z, Lei T-C (2014) Premature graying as a consequence of compromised antioxidant activity in hair bulb melanocytes and their precursors. PLoS ONE 9:e93589. CrossRefGoogle Scholar
  37. 37.
    Sundarrajan S, Lulu S, Arumugam M (2015) Insights into protein interaction networks reveal non-receptor kinases as significant druggable targets for psoriasis. Gene 566:138–147. CrossRefGoogle Scholar
  38. 38.
    Takase T, Hirai Y (2012) Identification of the C-terminal tail domain of AHF/trichohyalin as the critical site for modulation of the keratin filamentous meshwork in the keratinocyte. J Dermatol Sci 65:141–148. CrossRefGoogle Scholar
  39. 39.
    Trüeb RM (2009) Oxidative stress in ageing of hair. Int J Trichol 1:6–14. CrossRefGoogle Scholar
  40. 40.
    Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen D-H, Kuo B, May LA, Zuo J, Cunningham LL, Cheng AG (2015) Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 6:6613. CrossRefGoogle Scholar
  41. 41.
    Wu G, Dawson E, Duong A, Haw R, Stein L (2014) ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis. F1000 Res 3:146. Google Scholar
  42. 42.
    Wu G, Haw R (2017) Functional interaction network construction and analysis for disease discovery. In: Wu CH, Arighi CN, Ross KE (eds) Protein bioinformatics: from protein modifications and networks to proteomics. Springer, New York, pp 235–253. 10.1007/978-1-4939-6783-4_11.Google Scholar
  43. 43.
    Xu Q, Fu R, Yin G, Liu X, Liu Y, Xiang M (2016) Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells. Gene 578:263–273. CrossRefGoogle Scholar
  44. 44.
    Zhou Y, Wu Q (2014) Corin in natriuretic peptide processing and hypertension. Curr Hypertens Rep 16:415. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Integrative Biology, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations