Advertisement

Carboxyethyl aminobutyric acid (CEGABA) lacks cytotoxicity and genotoxicity and stimulates cell proliferation and migration in vitro

  • Vani dos Santos Laranjeira
  • Lucimar Filot da Silva Brum
  • Laura Bainy Rodrigues de Freitas
  • Jéssica Machado Miri
  • Valéria Rodrigues Pinhatti
  • Jean Fachini
  • Luciana Tomazzoni
  • Jaqueline Nascimento Picada
  • Ivana GrivicichEmail author
Original Paper
  • 18 Downloads

Abstract

Cosmeceuticals are cosmetics formulated using compounds with medical-like benefits. Though the antiaging effect of carboxyethyl aminobutyric acid (CEGABA) has been discussed, its action mechanism in cosmeceuticals remains unclear. This study assessed the in vitro efficacy and safety of CEGABA. NHI-3T3 mouse fibroblast cell line was treated with two CEGABA concentrations (50 and 500 μmol/L) for 24 h, 48 h, and 72 h. Cytotoxicity and genotoxicity were evaluated by colorimetry (MTT) and the alkaline version of the comet assay, respectively. Flow cytometry and the scratch-wound assay were used to assess cell-cycle phase distributions and cell migration rates. Compared with the untreated control, CEGABA increased cell growth 1.6 times after 72 h, independent of dose. The compound also decreased cell replication time by 4 h. These findings seem to be related with the approximately 1.5-times increase in phase S cells numbers. Importantly, in vitro wound healing improved roughly 20% after treatment with CEGABA for 24 h and persisted after 48 h, indicating culture recovery. The time-dependent proliferation and migration of fibroblasts induced by CEGABA besides the fact that the compound is neither genotoxic nor cytotoxic makes it an ideal candidate in the development of cosmeceuticals in antiaging therapy.

Keywords

CEGABA Cytotoxicity Fibroblasts Genotoxicity Scratch-wound assay 

Notes

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) (Grant no. 181/2012). Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    An JJ, Eum WS, Kwon HS, Koh JS, Lee SY, Baek JH, Cho YJ, Kim DW, Han KH, Park J, Jang SH, Choi SY (2013) Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J Cosmet Dermatol 12:287–295.  https://doi.org/10.1111/jocd.12067 CrossRefGoogle Scholar
  2. 2.
    Cerino A, de Amici M, Fussi F, Astaldi Ricotti GCB (1985) Carboxyethyl gamma-aminobutyric acid, a polyamine derivative molecule with a growth effect on hybridomas. J Immunol Methods 77:229–235CrossRefGoogle Scholar
  3. 3.
    Cerino A, Bestagno M, Colonna M, Fussi F, Astaldi Ricotti GC (1988) Carboxyethyl gamma-aminobutyric acid, a polyamine derivative, improves the recovery of EBV-transformed lymphocytes. Biochem Biophys Res Commun 150:931–936.  https://doi.org/10.1016/0006-291X(88)90718-8 CrossRefGoogle Scholar
  4. 4.
    Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, Longaker MT (2001) Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108:423–429CrossRefGoogle Scholar
  5. 5.
    Collins AR (2014) Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta 1840:794–800.  https://doi.org/10.1016/j.bbagen.2013.04.022 CrossRefGoogle Scholar
  6. 6.
    Davis SC, Perez R (2009) Cosmeceuticals and natural products: wound healing. Clin Dermatol 27:502–506.  https://doi.org/10.1016/j.clindermatol.2009.05.015 CrossRefGoogle Scholar
  7. 7.
    Duronio RJ, Xiong Y (2013) Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol 5(3):a008904.  https://doi.org/10.1101/cshperspect.a008904 CrossRefGoogle Scholar
  8. 8.
    Fussi F, Savoldi F, Curti M (1987) Identification of N-carboxyethyl gamma-aminobutyric acid in bovine brain and human cerebrospinal fluid. Neurosci Lett 77:308–310.  https://doi.org/10.1016/0304-3940(87)90518-0 CrossRefGoogle Scholar
  9. 9.
    Gallagher J, Gray M (2003) Is aloe vera effective for healing chronic wounds? J Wound Ostomy Cont Nurs 30:68–71.  https://doi.org/10.1067/mjw.2003.16 Google Scholar
  10. 10.
    Gomes RK, Damazio MG (2009) Cosmetologia: descomplicando os princípios ativos, 3rd edn. Livraria Médica Paulista, São PauloGoogle Scholar
  11. 11.
    Gunes S, Tamburaci S, Dalay MC, Deliloglu GI (2017) In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm Biol 55:1824–1832.  https://doi.org/10.1080/13880209.2017.1331249 CrossRefGoogle Scholar
  12. 12.
    Hirsch HR, Engelberg J (1965) Determination of the cell doubling-time distribution from culture growth-rate data. J Theor Biol 9:297–302.  https://doi.org/10.1016/0022-5193(65)90114-1 CrossRefGoogle Scholar
  13. 13.
    International Standard ISO 10993-5-ISO/EN10993-5 (2009) Biological evaluation of medical devices, part 5: tests for cytotoxicity in vitro methods, 3rd edn. ISO, GenevaGoogle Scholar
  14. 14.
    Jones SM, Kazlauskas A (2000) Connecting signaling and cell cycle progression in growth factor-stimulated cells. Oncogene 19:5558–5567.  https://doi.org/10.1038/sj.onc.1203858 CrossRefGoogle Scholar
  15. 15.
    Kahan V, Ribeiro DA, Egydio F, Barros LA, Tomimori J, Tufik S, Andersen ML (2014) Is lack of sleep capable of inducing DNA damage in aged skin? Skin Pharmacol Physiol 27:127–131.  https://doi.org/10.1159/000354915 CrossRefGoogle Scholar
  16. 16.
    Mao G, Goswami M, Kalen AL, Goswami PC, Sarsour EH (2016) N-acetyl-l-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing. Mol Biol Rep 43:31–39.  https://doi.org/10.1007/s11033-015-3935-1 CrossRefGoogle Scholar
  17. 17.
    Mine S, Fortunel NO, Pageon H, Asselineau D (2008) Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One 3:e4066.  https://doi.org/10.1371/journal.pone.0004066 CrossRefGoogle Scholar
  18. 18.
    Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging (Albany NY) 3:716–732. http://doi.org/10.18632/aging.100361
  19. 19.
    Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137.  https://doi.org/10.1016/j.cytogfr.2005.01.008 CrossRefGoogle Scholar
  20. 20.
    Moinard C, Cynober L, Bandt JP (2005) Polyamines: metabolism and implications in human diseases. Clin Nutr 24:184–197.  https://doi.org/10.1016/j.clnu.2004.11.001 CrossRefGoogle Scholar
  21. 21.
    Montagner S, Costa A (2009) Molecular basis of photoaging. An Bras Dermatol 84:263–269.  https://doi.org/10.1590/S0365-05962009000300008 CrossRefGoogle Scholar
  22. 22.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 16:55–63.  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  23. 23.
    Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186.  https://doi.org/10.1177/002215540104900912 CrossRefGoogle Scholar
  24. 24.
    Nakamizo S, Egawa G, Doi H, Natsuaki Y, Miyachi Y, Kabashima K (2013) Topical treatment with basic fibroblast growth factor promotes wound healing and barrier recovery induced by skin abrasion. Skin Pharmacol Physiol 26:22–29.  https://doi.org/10.1159/000343208 CrossRefGoogle Scholar
  25. 25.
    Naylor EC, Watson REB, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256.  https://doi.org/10.1016/j.maturitas.2011.04.011 CrossRefGoogle Scholar
  26. 26.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279CrossRefGoogle Scholar
  27. 27.
    Oredsson SM (2003) Polyamine dependence of normal cell-cycle progression. Biochem Soc Trans 31:366–370.  https://doi.org/10.1042/bst0310366 CrossRefGoogle Scholar
  28. 28.
    Oricha BS (2010) Cosmeceuticals: a review. Afr J Pharm Pharmacol 4:127–129Google Scholar
  29. 29.
    Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 3:445–464.  https://doi.org/10.1089/wound.2013.0473 CrossRefGoogle Scholar
  30. 30.
    Savoldi F, Ceroni M, Fussi F, Curti M (1987) Pharmacological effects of CEGABA, a new aminoacid occurring in mammalian brain. Farmaco Sci 42:77–79Google Scholar
  31. 31.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771.  https://doi.org/10.1111/j.1524-475X.2009.00543.x CrossRefGoogle Scholar
  32. 32.
    Sgonc R, Gruber J (2013) Age-related aspects of cutaneous wound healing: a mini-review. Gerontology 59:159–164.  https://doi.org/10.1159/000342344 CrossRefGoogle Scholar
  33. 33.
    Sikora E, Bielak-Zmijewska A, Mosieniak G (2014) Cellular senescence in ageing, age-related disease and longevity. Curr Vasc Pharmacol 12:698–706CrossRefGoogle Scholar
  34. 34.
    Souza VM, Antunes D (2009) Ativos dermatológicos, 3rd edn. Pharmabooks, São PauloGoogle Scholar
  35. 35.
    Swe M, Sit KH (2000) Z-VAD-fmk and DEVD-cho induced late mitosis arrest and apoptotic expressions. Apoptosis 5:29–36CrossRefGoogle Scholar
  36. 36.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  37. 37.
    Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5:119–136.  https://doi.org/10.1089/wound.2014.0561 CrossRefGoogle Scholar
  38. 38.
    Treiber N, Maity P, Singh K, Ferchiu F, Wlaschek M, Scharffetter-Kochanek K (2012) The role of manganese superoxide dismutase in skin aging. Dermatoendocrinology 4:232–235.  https://doi.org/10.4161/derm.21819 CrossRefGoogle Scholar
  39. 39.
    Verschoore M, Nielson M (2017) The rationale of anti-aging cosmetic ingredients. J Drugs Dermatol 16:s94–s97Google Scholar
  40. 40.
    Vockel M, Pollok S, Breitenbach U, Ridderbusch I, Kreienkamp H, Brandner JM (2011) Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model. PLoS One 6:e19740.  https://doi.org/10.1371/journal.pone.0019740 CrossRefGoogle Scholar
  41. 41.
    Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316:1271–1281.  https://doi.org/10.1016/j.yexcr.2010.02.026 CrossRefGoogle Scholar
  42. 42.
    Zhao T, Goh KJ, Ng HH, Vardy LA (2012) A role for polyamine regulators in ESC self-renewal. Cell Cycle 11:4517–4523.  https://doi.org/10.4161/cc.22772 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vani dos Santos Laranjeira
    • 1
    • 2
  • Lucimar Filot da Silva Brum
    • 2
  • Laura Bainy Rodrigues de Freitas
    • 1
  • Jéssica Machado Miri
    • 1
  • Valéria Rodrigues Pinhatti
    • 3
  • Jean Fachini
    • 4
  • Luciana Tomazzoni
    • 1
  • Jaqueline Nascimento Picada
    • 4
  • Ivana Grivicich
    • 1
    Email author
  1. 1.Laboratório de Biologia do Câncer, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à SaúdeUniversidade Luterana do Brasil, ULBRACanoasBrazil
  2. 2.Laboratório de Farmacologia e Toxicologia, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à SaúdeUniversidade Luterana do BrasilCanoasBrazil
  3. 3.Laboratório de Células-tronco e Engenharia de Tecidos, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à SaúdeUniversidade Luterana do BrasilCanoasBrazil
  4. 4.Laboratório de Genética Toxicológica, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à SaúdeUniversidade Luterana do BrasilCanoasBrazil

Personalised recommendations