Advertisement

Preoperative deltoid assessment by contrast-enhanced ultrasound (CEUS) as predictor for shoulder function after reverse shoulder arthroplasty: a prospective pilot study

  • Christian Fischer
  • Sophie Flammer
  • Hans-Ulrich Kauczor
  • Felix Zeifang
  • Gerhard Schmidmaier
  • Pierre KunzEmail author
Orthopaedic Surgery

Abstract

Introduction

Although the deltoid represents the main motor muscle after reverse shoulder arthroplasty (RSA), its standardized preoperative assessment regarding morphology and function is still not established. Its clinical relevance and interactions with major biomechanical parameters like the medialization of the center of rotation (COR) regarding shoulder function after RSA are yet unknown. We evaluated contrast-enhanced ultrasound (CEUS) of the deltoid as possible surrogate marker for individual deltoid properties of patients receiving an RSA, and its predictive value for postoperative shoulder function.

Materials and methods

35 patients were prospectively assessed. Before and 6 months after RSA, dynamic deltoid perfusion, caliber and a combination of both (PE*caliber, named DeltoidEfficacy) was quantified by CEUS. Changes of deltoid properties and the predictive value of preoperative CEUS-based deltoid properties for shoulder function after RSA were assessed. To analyze interrelating effects with deltoid properties, COR-medialization and deltoid lengthening were quantified.

Results

Deltoid caliber and perfusion significantly increased after RSA (p = 0.0004/p = 0.002). Preoperative deltoid caliber, perfusion and the combined value DeltoidEfficacy significantly correlated with shoulder function after RSA within the whole study cohort (caliber: r = 0.445, p = 0.009; perfusion: r = 0.593, p = 0.001; DeltoidEfficacy: r = 0.66; p = 0.0002). The predictive value of DeltoidEfficacy for shoulder function after RSA varied among patient subgroups: Multivariate regression analysis revealed the strongest prediction in patients with either very high or very low deltoid properties (Beta = 0.872, r = 0.84, p = 0.0004), independent from COR-medialization or deltoid lengthening. Contrary, in patients with intermediate deltoid properties, COR-medialization revealed the strongest predictive value for shoulder function after RSA (Beta = 0.660, r = 0.597; p = 0.024).

Conclusion

Deltoid CEUS seems to allow an assessment of individual deltoid properties and deltoid adaptations after RSA. Deltoid CEUS seems to predict shoulder function after RSA and might support an identification of patients requiring special attention regarding COR positioning.

Keywords

CEUS RSA Predictor Deltoid assessment Center of rotation Reverse shoulder arthroplasty 

Notes

Acknowledgements

We thank the German Society for Ultrasound in Medicine (DEGUM) for funding the study (Grant number 2015-05-27-A)

Funding

The study was funded by the German Society for Ultrasound in Medicine (DEGUM) (Grant number 2015–05-27-A).

Compliance with ethical standards

Conflict of interest

None of the authors, their immediate family, and any research foundation with which they are affiliated did receive any financial payments or other benefits from any commercial entity related to the subject of this article.

Ethical approval

The prospective longitudinal cohort study was approved by the ethics committee of the University of Heidelberg (S626/2014) and registered at the German Clinical Trials Register (DRK S00010934).

References

  1. 1.
    Guery J, Favard L, Sirveaux F, Oudet D, Mole D, Walch G (2006) Reverse total shoulder arthroplasty. Survivorship analysis of eighty replacements followed for five to ten years. J Bone Joint Surg Am 88(8):1742–1747.  https://doi.org/10.2106/JBJS.E.00851 CrossRefPubMedGoogle Scholar
  2. 2.
    Wall B, Nove-Josserand L, O'Connor DP, Edwards TB, Walch G (2007) Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Jt Surg Am 89(7):1476–1485.  https://doi.org/10.2106/JBJS.F.00666 CrossRefGoogle Scholar
  3. 3.
    Grammont PTP, Laffay J, Deries X (1987) Concept study and realization of a new total shoulder prosthesis. Rhumatologie 39:407–418Google Scholar
  4. 4.
    Ackland DC, Pandy MG (2011) Moment arms of the shoulder muscles during axial rotation. J Orthop Res 29(5):658–667.  https://doi.org/10.1002/jor.21269 CrossRefPubMedGoogle Scholar
  5. 5.
    Giles JW, Langohr GD, Johnson JA, Athwal GS (2015) Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res 473(11):3615–3626.  https://doi.org/10.1007/s11999-015-4526-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tashjian RZ, Burks RT, Zhang Y, Henninger HB (2015) Reverse total shoulder arthroplasty: a biomechanical evaluation of humeral and glenosphere hardware configuration. J Shoulder Elbow Surg 24(3):e68–77.  https://doi.org/10.1016/j.jse.2014.08.017 CrossRefPubMedGoogle Scholar
  7. 7.
    Middernacht B, Van Tongel A, De Wilde L (2016) A critical review on prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int 2016:3256931.  https://doi.org/10.1155/2016/3256931 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG (2011) Muscle and joint-contact loading at the glenohumeral joint after reverse total shoulder arthroplasty. J Orthop Res 29(12):1850–1858.  https://doi.org/10.1002/jor.21437 CrossRefPubMedGoogle Scholar
  9. 9.
    Wiater BP, Koueiter DM, Maerz T, Moravek JE Jr, Yonan S, Marcantonio DR, Wiater JM (2015) Preoperative deltoid size and fatty infiltration of the deltoid and rotator cuff correlate to outcomes after reverse total shoulder arthroplasty. Clin Orthop Relat Res 473(2):663–673.  https://doi.org/10.1007/s11999-014-4047-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Yoon JP, Seo A, Kim JJ, Lee CH, Baek SH, Kim SY, Jeong ET, Oh KS, Chung SW (2017) Deltoid muscle volume affects clinical outcome of reverse total shoulder arthroplasty in patients with cuff tear arthropathy or irreparable cuff tears. PLoS ONE 12(3):e0174361.  https://doi.org/10.1371/journal.pone.0174361 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Amarteifio E, Krix M, Wormsbecher S, Demirel S, Braun S, Delorme S, Kauczor HU, Bockler D, Weber MA (2013) Dynamic contrast-enhanced ultrasound for assessment of therapy effects on skeletal muscle microcirculation in peripheral arterial disease: pilot study. Eur J Radiol 82(4):640–646.  https://doi.org/10.1016/j.ejrad.2012.11.022 CrossRefPubMedGoogle Scholar
  12. 12.
    Hildebrandt W, Schwarzbach H, Pardun A, Hannemann L, Bogs B, Konig AM, Mahnken AH, Hildebrandt O, Koehler U, Kinscherf R (2017) Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS). PLoS ONE 12(3):e0172771.  https://doi.org/10.1371/journal.pone.0172771 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thomas KN, Cotter JD, Lucas SJ, Hill BG, van Rij AM (2015) Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease. Ultrasound Med Biol 41(1):26–34.  https://doi.org/10.1016/j.ultrasmedbio.2014.06.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Murrant CL, Sarelius IH (2000) Coupling of muscle metabolism and muscle blood flow in capillary units during contraction. Acta Physiol Scand 168(4):531–541.  https://doi.org/10.1046/j.1365-201x.2000.00706.x CrossRefPubMedGoogle Scholar
  15. 15.
    Weber MA, Krakowski-Roosen H, Hildebrandt W, Schroder L, Ionescu I, Krix M, Kinscherf R, Bachert P, Kauczor HU, Essig M (2007) Assessment of metabolism and microcirculation of healthy skeletal muscles by magnetic resonance and ultrasound techniques. J Neuroimaging 17(4):323–331.  https://doi.org/10.1111/j.1552-6569.2007.00156.x CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer C, Frank M, Kunz P, Tanner M, Weber MA, Moghaddam A, Schmidmaier G, Hug A (2016) Dynamic contrast-enhanced ultrasound (CEUS) after open and minimally invasive locked plating of proximal humerus fractures. Injury.  https://doi.org/10.1016/j.injury.2016.05.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Fischer C, Krammer D, Hug A, Weber MA, Kauczor HU, Krix M, Bruckner T, Kunz P, Schmidmaier G, Zeifang F (2017) Dynamic contrast-enhanced ultrasound and elastography assess deltoid muscle integrity after reverse shoulder arthroplasty. J Shoulder Elbow Surg 26(1):108–117.  https://doi.org/10.1016/j.jse.2016.04.012 CrossRefPubMedGoogle Scholar
  18. 18.
    Fischer C, Gross S, Zeifang F, Schmidmaier G, Weber MA, Kunz P (2018) Contrast-enhanced ultrasound determines supraspinatus muscle atrophy after cuff repair and correlates to functional shoulder outcome. Am J Sports Med 46(11):2735–2742.  https://doi.org/10.1177/0363546518787266 CrossRefPubMedGoogle Scholar
  19. 19.
    von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S (2007) The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370(9596):1453–1457.  https://doi.org/10.1016/S0140-6736(07)61602-X CrossRefGoogle Scholar
  20. 20.
    Schulz KF, Altman DG, Moher D, Group C (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med 7(3):e1000251.  https://doi.org/10.1371/journal.pmed.1000251 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC, Standards for Reporting of Diagnostic A (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem 49(1):1–6CrossRefPubMedGoogle Scholar
  22. 22.
    Dietrich CF, Averkiou M, Nielsen MB, Barr RG, Burns PN, Calliada F, Cantisani V, Choi B, Chammas MC, Clevert DA, Claudon M, Correas JM, Cui XW, Cosgrove D, D'Onofrio M, Dong Y, Eisenbrey J, Fontanilla T, Gilja OH, Ignee A, Jenssen C, Kono Y, Kudo M, Lassau N, Lyshchik A, Franca Meloni M, Moriyasu F, Nolsoe C, Piscaglia F, Radzina M, Saftoiu A, Sidhu PS, Sporea I, Schreiber-Dietrich D, Sirlin CB, Stanczak M, Weskott HP, Wilson SR, Willmann JK, Kim TK, Jang HJ, Vezeridis A, Westerway S (2018) How to perform Contrast-Enhanced Ultrasound (CEUS). Ultrasound Int Open 4(1):E2–e15.  https://doi.org/10.1055/s-0043-123931 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sidhu PS, Cantisani V, Dietrich CF, Gilja OH, Saftoiu A, Bartels E, Bertolotto M, Calliada F, Clevert DA, Cosgrove D, Deganello A, D'Onofrio M, Drudi FM, Freeman S, Harvey C, Jenssen C, Jung EM, Klauser AS, Lassau N, Meloni MF, Leen E, Nicolau C, Nolsoe C, Piscaglia F, Prada F, Prosch H, Radzina M, Savelli L, Weskott HP, Wijkstra H (2018) The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in non-hepatic applications: update 2017 (long version). Ultraschall Med.  https://doi.org/10.1055/a-0586-1107 CrossRefPubMedGoogle Scholar
  24. 24.
    Jobin CM, Brown GD, Bahu MJ, Gardner TR, Bigliani LU, Levine WN, Ahmad CS (2012) Reverse total shoulder arthroplasty for cuff tear arthropathy: the clinical effect of deltoid lengthening and center of rotation medialization. J Shoulder Elbow Surg 21(10):1269–1277.  https://doi.org/10.1016/j.jse.2011.08.049 CrossRefPubMedGoogle Scholar
  25. 25.
    Boileau P, Gonzalez JF, Chuinard C, Bicknell R, Walch G (2009) Reverse total shoulder arthroplasty after failed rotator cuff surgery. J Shoulder Elbow Surg 18(4):600–606.  https://doi.org/10.1016/j.jse.2009.03.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Favard L, Levigne C, Nerot C, Gerber C, De Wilde L, Mole D (2011) Reverse prostheses in arthropathies with cuff tear: are survivorship and function maintained over time? Clin Orthop Relat Res 469(9):2469–2475.  https://doi.org/10.1007/s11999-011-1833-y CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Boileau P, Watkinson D, Hatzidakis AM, Hovorka I (2006) Neer Award 2005: The Grammont reverse shoulder prosthesis: results in cuff tear arthritis, fracture sequelae, and revision arthroplasty. J Shoulder Elbow Surg 15(5):527–540.  https://doi.org/10.1016/j.jse.2006.01.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Ackland DC, Roshan-Zamir S, Richardson M, Pandy MG (2010) Moment arms of the shoulder musculature after reverse total shoulder arthroplasty. J Bone Jt Surg Am 92(5):1221–1230.  https://doi.org/10.2106/JBJS.I.00001 CrossRefGoogle Scholar
  29. 29.
    De Wilde LF, Plasschaert FS, Audenaert EA, Verdonk RC (2005) Functional recovery after a reverse prosthesis for reconstruction of the proximal humerus in tumor surgery. Clin Orthop Relat Res 430:156–162CrossRefGoogle Scholar
  30. 30.
    Henninger HB, Barg A, Anderson AE, Bachus KN, Tashjian RZ, Burks RT (2012) Effect of deltoid tension and humeral version in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 21(4):483–490.  https://doi.org/10.1016/j.jse.2011.01.040 CrossRefPubMedGoogle Scholar
  31. 31.
    Saltzman MD, Mercer DM, Warme WJ, Bertelsen AL, Matsen FA 3rd (2010) A method for documenting the change in center of rotation with reverse total shoulder arthroplasty and its application to a consecutive series of 68 shoulders having reconstruction with one of two different reverse prostheses. J Shoulder Elbow Surg 19(7):1028–1033.  https://doi.org/10.1016/j.jse.2010.01.021 CrossRefPubMedGoogle Scholar
  32. 32.
    Ladermann A, Walch G, Lubbeke A, Drake GN, Melis B, Bacle G, Collin P, Edwards TB, Sirveaux F (2012) Influence of arm lengthening in reverse shoulder arthroplasty. J Shoulder Elbow Surg 21(3):336–341.  https://doi.org/10.1016/j.jse.2011.04.020 CrossRefPubMedGoogle Scholar
  33. 33.
    Schwartz DG, Cottrell BJ, Teusink MJ, Clark RE, Downes KL, Tannenbaum RS, Frankle MA (2014) Factors that predict postoperative motion in patients treated with reverse shoulder arthroplasty. J Shoulder Elbow Surg 23(9):1289–1295.  https://doi.org/10.1016/j.jse.2013.12.032 CrossRefPubMedGoogle Scholar
  34. 34.
    Henninger HB, Barg A, Anderson AE, Bachus KN, Burks RT, Tashjian RZ (2012) Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 21(9):1128–1135.  https://doi.org/10.1016/j.jse.2011.07.034 CrossRefPubMedGoogle Scholar
  35. 35.
    Rudzki JR, Adler RS, Warren RF, Kadrmas WR, Verma N, Pearle AD, Lyman S, Fealy S (2008) Contrast-enhanced ultrasound characterization of the vascularity of the rotator cuff tendon: age- and activity-related changes in the intact asymptomatic rotator cuff. J Shoulder Elbow Surg 17(1 Suppl):96s–100s.  https://doi.org/10.1016/j.jse.2007.07.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Gutierrez S, Levy JC, Lee WE 3rd, Keller TS, Maitland ME (2007) Center of rotation affects abduction range of motion of reverse shoulder arthroplasty. Clin Orthop Relat Res 458:78–82.  https://doi.org/10.1097/BLO.0b013e31803d0f57 CrossRefPubMedGoogle Scholar
  37. 37.
    Ladermann A, Edwards TB, Walch G (2014) Arm lengthening after reverse shoulder arthroplasty: a review. Int Orthop 38(5):991–1000.  https://doi.org/10.1007/s00264-013-2175-z CrossRefPubMedGoogle Scholar
  38. 38.
    Sabesan VJ, Lombardo D, Josserand D, Buzas D, Jelsema T, Petersen-Fitts GR, Wiater JM (2016) The effect of deltoid lengthening on functional outcome for reverse shoulder arthroplasty. Musculoskelet Surg 100(2):127–132.  https://doi.org/10.1007/s12306-016-0400-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Greiner SH, Back DA, Herrmann S, Perka C, Asbach P (2010) Degenerative changes of the deltoid muscle have impact on clinical outcome after reversed total shoulder arthroplasty. Arch Orthop Trauma Surg 130(2):177–183.  https://doi.org/10.1007/s00402-009-1001-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christian Fischer
    • 1
  • Sophie Flammer
    • 1
  • Hans-Ulrich Kauczor
    • 2
  • Felix Zeifang
    • 3
  • Gerhard Schmidmaier
    • 1
  • Pierre Kunz
    • 1
    • 4
    Email author
  1. 1.Center for Orthopedics, Trauma Surgery and Spinal Cord InjuryHTRG-Heidelberg Trauma Research Group, Heidelberg University HospitalHeidelbergGermany
  2. 2.Diagnostic and Interventional RadiologyHeidelberg University HospitalHeidelbergGermany
  3. 3.Ethianum Clinic HeidelbergHeidelbergGermany
  4. 4.Clinic for Shoulder and Elbow SurgeryCatholic Hospital MainzMainzGermany

Personalised recommendations