Archives of Orthopaedic and Trauma Surgery

, Volume 139, Issue 8, pp 1141–1147 | Cite as

Posterior condylar resections in total knee arthroplasty: current standard instruments do not restore femoral condylar anatomy

  • Nina Wuertele
  • Johannes BeckmannEmail author
  • Malin Meier
  • Jochen Huth
  • Wolfgang Fitz
Knee Arthroplasty



Correct femoral rotational alignment in total knee arthroplasty (TKA) is important for femoropatellar knee kinematics as well as for the overall clinical success. The goal of the present study was to evaluate how accurately standard instruments of various manufacturers with specific rotational settings in posterior referencing restore the posterior femoral condylar anatomy and allow a rotational alignment which matches a particular anatomic rotational landmark on CT.


The anatomical transepicondylar axis (aTEA) and the posterior condylar line (PCL) were identified and the angle formed by these two axes was measured on 100 consecutive CT scans of knees. A virtual posterior condylar resection was performed relative to the aTEA for femoral sizers of various manufacturers in different external rotations ranging from 3° to 7°. The resections of medial and lateral posterior condyle were calculated as well as the condylar twist angle (CTA) between PCL and aTEA.


The posterior condylar resection varied between 9 mm and 14 mm on the medial side and between 4 mm and 10.5 mm on the lateral side. The mean CTA was 5.5° of internal rotation (SD ± 1.9°). External femoral rotation resulted in increased resection of the medial posterior condyle and decreased resection of the lateral posterior condyle.


Femoral sizers using a posterior referencing technique increase, with rising external rotation, medial posterior condylar resection to an extent that may exceed the implant thickness in the majority of systems. Surgeons should be aware that current standard instruments do not restore the anatomy of the posterior medial and lateral condyle and do not align the femoral component parallel to the aTEA, which may result in internal rotation of a symmetric femoral component.


TKA Rotation Posterior condylar referencing Posterior condylar offset TEA Total knee replacement CTA MCO LCO 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Akagi M, Matsusue Y, Mata T et al (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 366:155–163CrossRefGoogle Scholar
  2. 2.
    Barrack RL, Schrader T, Bertot AJ et al (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55CrossRefGoogle Scholar
  3. 3.
    Bédard M, Vince KG, Redfern J, Collen SR (2011) Internal rotation of the tibial component is frequent in stiff total knee arthroplasty. Clin Orthop Relat Res 469:2346–2355. CrossRefGoogle Scholar
  4. 4.
    Bell SW, Young P, Drury C et al (2014) Component rotational alignment in unexplained painful primary total knee arthroplasty. Knee 21:272–277. CrossRefGoogle Scholar
  5. 5.
    Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153CrossRefGoogle Scholar
  6. 6.
    Nicoll D, Rowley DI (2010) Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Jt Surg Br 92:1238–1244. CrossRefGoogle Scholar
  7. 7.
    Laskin RS (1995) Flexion space configuration in total knee arthroplasty. J Arthroplasty 10:657–660CrossRefGoogle Scholar
  8. 8.
    Sharkey PF, Hozack WJ, Rothman RH et al (2002) Insall Award paper Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13CrossRefGoogle Scholar
  9. 9.
    Berger RA, Rubash HE, Seel MJ et al (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47Google Scholar
  10. 10.
    Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172Google Scholar
  11. 11.
    Michaut M, Beaufils P, Galaud B et al (2008) Rotational alignment of femoral component with computed-assisted surgery (CAS) during total knee arthroplasty. Rev Chir Orthop Reparatrice Appar Mot 94:580–584. CrossRefGoogle Scholar
  12. 12.
    Victor J, Van Doninck D, Labey L et al (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16:358–365. CrossRefGoogle Scholar
  13. 13.
    Tokuhara Y, Kadoya Y, Nakagawa S et al (2004) The flexion gap in normal knees. An MRI study. J Bone Jt Surg Br 86:1133–1136CrossRefGoogle Scholar
  14. 14.
    Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38:241–253. CrossRefGoogle Scholar
  15. 15.
    Pinskerova V, Johal P, Nakagawa S et al (2004) Does the femur roll-back with flexion? J Bone Jt Surg Br 86:925–931CrossRefGoogle Scholar
  16. 16.
    Stiehl JB, Komistek RD, Dennis DA et al (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Jt Surg Br 77:884–889CrossRefGoogle Scholar
  17. 17.
    Fehring TK (2000) Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 380:72–79CrossRefGoogle Scholar
  18. 18.
    Azukizawa M, Kuriyama S, Nakamura S et al (2018) Intraoperative medial joint laxity in flexion decreases patient satisfaction after total knee arthroplasty. Arch Orthop Trauma Surg 138:1143–1150. CrossRefGoogle Scholar
  19. 19.
    Fitz W, Sodha S, Reichmann W, Minas T (2012) Does a modified gap-balancing technique result in medial-pivot knee kinematics in cruciate-retaining total knee arthroplasty? A pilot study. Clin Orthop Relat Res 470:91–98. CrossRefGoogle Scholar
  20. 20.
    Matziolis G, Brodt S, Windisch C, Roehner E (2017) Changes of posterior condylar offset results in midflexion instability in single-radius total knee arthroplasty. Arch Orthop Trauma Surg 137:713–717. CrossRefGoogle Scholar
  21. 21.
    Minoda Y, Mizokawa S, Ohta Y et al (2016) Posterior reference guides do not always maintain the size of posterior femoral condyles in TKA. Knee Surg Sports Traumatol Arthrosc 24:2489–2495. CrossRefGoogle Scholar
  22. 22.
    Bonnin MP, Saffarini M, Nover L et al (2017) External rotation of the femoral component increases asymmetry of the posterior condyles. Bone Jt J 99:894–903. CrossRefGoogle Scholar
  23. 23.
    Bellemans J, Banks S, Victor J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Jt Surg Br 84:50–53CrossRefGoogle Scholar
  24. 24.
    Dossett HG, Estrada NA, Swartz GJ et al (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Jt J 96:907–913. CrossRefGoogle Scholar
  25. 25.
    Woon JTK, Zeng ISL, Calliess T et al (2018) Outcome of kinematic alignment using patient-specific instrumentation versus mechanical alignment in TKA: a meta-analysis and subgroup analysis of randomised trials. Arch Orthop Trauma Surg 138:1293–1303. CrossRefGoogle Scholar
  26. 26.
    Narkbunnam R, Electricwala AJ, Huddleston JI et al (2019) Suboptimal patellofemoral alignment is associated with poor clinical outcome scores after primary total knee arthroplasty. Arch Orthop Trauma Surg 139:249–254. CrossRefGoogle Scholar
  27. 27.
    Kinzel V, Ledger M, Shakespeare D (2005) Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee 12:293–296. CrossRefGoogle Scholar
  28. 28.
    Hirschmann MT, Konala P, Amsler F et al (2011) The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Jt Surg Br 93:629–633. CrossRefGoogle Scholar
  29. 29.
    Jazrawi LM, Birdzell L, Kummer FJ, Di Cesare PE (2000) The accuracy of computed tomography for determining femoral and tibial total knee arthroplasty component rotation. J Arthroplasty 15:761–766. CrossRefGoogle Scholar
  30. 30.
    Clarke HD (2012) Changes in posterior condylar offset after total knee arthroplasty cannot be determined by radiographic measurements alone. J Arthroplasty 27:1155–1158. CrossRefGoogle Scholar
  31. 31.
    Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16:493–497. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nina Wuertele
    • 1
  • Johannes Beckmann
    • 2
    Email author
  • Malin Meier
    • 2
  • Jochen Huth
    • 2
  • Wolfgang Fitz
    • 3
  1. 1.Klinikum Stuttgart-OlgahospitalStuttgartGermany
  2. 2.Sportklinik Stuttgart Taubenheimstr. 8StuttgartGermany
  3. 3.Harvard Medical School Brigham and Women’S HospitalBostonUSA

Personalised recommendations