Advertisement

Multivariable analysis of anatomic risk factors for anterior cruciate ligament injury in active individuals

  • Xianyue Shen
  • Jianlin Xiao
  • Yuhui Yang
  • Tong Liu
  • Shangjun Chen
  • Zhongli Gao
  • Jianlin ZuoEmail author
Arthroscopy and Sports Medicine
  • 6 Downloads

Abstract

Objective

The aim of the present study was to compare the morphometric differences between patients with or without anterior cruciate ligament (ACL) injury, and identify the anatomic risk factors associated with ACL injury in active individuals.

Methods

The knee joint magnetic resonance images (MRI) of 100 subjects were included in this study. Data from the ACL-injured group (50 patients) and matched controls (50 subjects) were obtained from the same hospital. These data were analyzed by univariable analysis or multivariable conditional logistic regression analysis to examine the effects of the following variables on the risk of suffering ACL injury for the first time: TT-TG distance, medial and lateral tibial slope, intercondylar notch width and depth, femur condylar width, lateral femoral condylar depth, notch width index (NWI), notch shape index (NSI), notch depth index (NDI), and cross-sectional area (CSA).

Results

In the univariable analysis, the ACL-injured group had a larger TT-TG distance, increased medial and lateral tibial slope, narrower intercondylar notch width, deeper lateral femoral condylar depth, lesser NWI and NSI, and CSA when compared with the control group (P < 0.05). However, there were no significant between-group differences in intercondylar notch depth (P = 0.174), femur condylar width (P = 0.797), and NDI (P = 0.436). The multivariable analysis revealed that TT-TG distance [odds ratio (OR) = 1.37, 95% CI = 1.04–1.81, P = 0.028], medial tibial slope (OR = 1.30, 95% CI = 1.02–1.66, P = 0.036) and NWI (OR = 0.46, 95% CI = 0.24–0.91, P = 0.025) had significant multivariable associations with the sole independent risk of ACL injury.

Conclusion

Larger TT-TG distance, increased MTS, and lesser NWI are independent anatomic risk factors for active individuals with ACL injury.

Level of evidence

Case-control study; Level of Evidence, III.

Keywords

Anterior cruciate ligament injury Tibial plateau TT-TG distance MRI Risk factors 

Notes

Funding

There was no funding for this study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Mehl J, Diermeier T, Herbst E, Imhoff AB, Stoffels T, Zantop T, Petersen W, Achtnich A, (2018) Evidence-based concepts for prevention of knee, and ACL injuries. (2017) guidelines of the ligament committee of the German knee society (DKG). Arch Orthop Trauma Surg 138(1):51–61.  https://doi.org/10.1007/s00402-017-2809-5 CrossRefGoogle Scholar
  2. 2.
    Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L (2008) Development of a national cruciate ligament surgery registry: the Norwegian national knee ligament registry. Am J Sports Med 36(2):308–315.  https://doi.org/10.1177/0363546507308939 CrossRefGoogle Scholar
  3. 3.
    Clayton RA, Court-Brown CM (2008) The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury 39(12):1338–1344.  https://doi.org/10.1016/j.injury.2008.06.021 CrossRefGoogle Scholar
  4. 4.
    Maradit Kremers H, Bryan A, Larson D, Dahm D, Levy B, Stuart M, Krych A (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507.  https://doi.org/10.1177/0363546516629944 CrossRefGoogle Scholar
  5. 5.
    Barie A, Kopf M, Jaber A, Moradi B, Schmitt H, Huber J, Streich NA (2018) Long-term follow-up after anterior cruciate ligament reconstruction using a press-fit quadriceps tendon-patellar bone autograft. BMC Musculoskelet Disord 19(1):368.  https://doi.org/10.1186/s12891-018-2271-8 CrossRefGoogle Scholar
  6. 6.
    Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK (2013) Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med 41(2):385–395.  https://doi.org/10.1177/0363546512465167 CrossRefGoogle Scholar
  7. 7.
    Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthopaedics Related Res 442:39–44.  https://doi.org/10.1097/01.blo.0000197079.26600.09 CrossRefGoogle Scholar
  8. 8.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33(4):524–530.  https://doi.org/10.1177/0363546504269937 CrossRefGoogle Scholar
  9. 9.
    Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448.  https://doi.org/10.1007/s00167-008-0498-x CrossRefGoogle Scholar
  10. 10.
    Gottlob CA, Baker CL Jr (2000) Anterior cruciate ligament reconstruction: socioeconomic issues and cost effectiveness. Am J Orthopedics (Belle Mead, NJ) 29(6):472–476Google Scholar
  11. 11.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769.  https://doi.org/10.1177/0363546507307396 CrossRefGoogle Scholar
  12. 12.
    Jaecker V, Zapf T, Naendrup JH, Kanakamedala AC, Pfeiffer T, Shafizadeh S (2018) Differences between traumatic and non-traumatic causes of ACL revision surgery. Arch Orthop Trauma Surg 138(9):1265–1272.  https://doi.org/10.1007/s00402-018-2954-5 CrossRefGoogle Scholar
  13. 13.
    Alentorn-Geli E, Pelfort X, Mingo F, Lizano-Diez X, Leal-Blanquet J, Torres-Claramunt R, Hinarejos P, Puig-Verdie L, Monllau JC (2015) An evaluation of the association between radiographic intercondylar notch Narrowing and anterior cruciate ligament injury in men: the notch angle is a better parameter than notch width. Arthroscopy 31(10):2004–2013.  https://doi.org/10.1016/j.arthro.2015.04.088 CrossRefGoogle Scholar
  14. 14.
    Al-Saeed O, Brown M, Athyal R, Sheikh M (2013) Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 21(3):678–682.  https://doi.org/10.1007/s00167-012-2038-y CrossRefGoogle Scholar
  15. 15.
    Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 42(5):1039–1048.  https://doi.org/10.1177/0363546514523721 CrossRefGoogle Scholar
  16. 16.
    Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA, Jones KJ (2015) Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case-control study of 152 patients. Am J Sports Med 43(7):1632–1639.  https://doi.org/10.1177/0363546515579182 CrossRefGoogle Scholar
  17. 17.
    Geng B, Wang J, Ma JL, Zhang B, Jiang J, Tan XY, Xia YY (2016) Narrow intercondylar notch and anterior cruciate ligament injury in female nonathletes with knee osteoarthritis aged 41–65 years in plateau region. Chin Med J 129(21):2540–2545.  https://doi.org/10.4103/0366-6999.192771 CrossRefGoogle Scholar
  18. 18.
    Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V (2016) Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am 98(12):1001–1006.  https://doi.org/10.2106/JBJS.15.01163 CrossRefGoogle Scholar
  19. 19.
    Saper MG, Popovich JM Jr, Fajardo R, Hess S, Pascotto JL, Shingles M (2016) The Relationship between tibial tubercle-trochlear groove distance and noncontact anterior cruciate ligament injuries in adolescents and young adults. Arthroscopy 32(1):63–68.  https://doi.org/10.1016/j.arthro.2015.06.036 CrossRefGoogle Scholar
  20. 20.
    Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707.  https://doi.org/10.1016/j.jbiomech.2010.02.033 CrossRefGoogle Scholar
  21. 21.
    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH (2010) Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 18(9):1257–1262.  https://doi.org/10.1007/s00167-010-1135-z CrossRefGoogle Scholar
  22. 22.
    Souryal T, Freeman T (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21 (4):535–539Google Scholar
  23. 23.
    Chandrashekar N, Mansouri H, Gill B, Slauterbeck J, Schutt R, Dabezies E, Beynnon B (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62.  https://doi.org/10.1177/0363546509349055 CrossRefGoogle Scholar
  24. 24.
    Evans KN, Kilcoyne KG, Dickens JF, Rue JP, Giuliani J, Gwinn D, Wilckens JH (2012) Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surg Sports Traumatol Arthrosc 20(8):1554–1559.  https://doi.org/10.1007/s00167-011-1755-y CrossRefGoogle Scholar
  25. 25.
    Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2015) Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 43(4):839–847.  https://doi.org/10.1177/0363546514563277 CrossRefGoogle Scholar
  26. 26.
    Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13(1):26–31.  https://doi.org/10.1016/j.knee.2005.06.003 CrossRefGoogle Scholar
  27. 27.
    Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467(8):2066–2072.  https://doi.org/10.1007/s11999-009-0711-3 CrossRefGoogle Scholar
  28. 28.
    Cao J, Zhang J, Yang D, Yang L, Shen Y (2017) Multivariate analysis of factors associated with kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Sci Rep 7:43443.  https://doi.org/10.1038/srep43443 CrossRefGoogle Scholar
  29. 29.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191CrossRefGoogle Scholar
  30. 30.
    Suomalainen JS, Regalado G, Joukainen A, Kaariainen T, Kononen M, Manninen H, Sipola P, Kokki H (2018) Effects of knee flexion and extension on the tibial tuberosity-trochlear groove (TT-TG) distance in adolescents. J Exp Orthop 5(1):31.  https://doi.org/10.1186/s40634-018-0149-1 CrossRefGoogle Scholar
  31. 31.
    Atarod M, Frank CB, Shrive NG (2014) Kinematic and kinetic interactions during normal and ACL-deficient gait: a longitudinal in vivo study. Ann Biomed Eng 42(3):566–578.  https://doi.org/10.1007/s10439-013-0914-3 CrossRefGoogle Scholar
  32. 32.
    Chen CH, Li JS, Hosseini A, Gadikota HR, Gill TJ, Li G (2012) Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture 35(3):467–471.  https://doi.org/10.1016/j.gaitpost.2011.11.009 CrossRefGoogle Scholar
  33. 33.
    Bicer EK, Lustig S, Servien E, Selmi TA, Neyret P (2010) Current knowledge in the anatomy of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18(8):1075–1084.  https://doi.org/10.1007/s00167-009-0993-8 CrossRefGoogle Scholar
  34. 34.
    Kondo E, Merican AM, Yasuda K, Amis AA (2014) Biomechanical analysis of knee laxity with isolated anteromedial or posterolateral bundle-deficient anterior cruciate ligament. Arthroscopy 30(3):335–343.  https://doi.org/10.1016/j.arthro.2013.12.003 CrossRefGoogle Scholar
  35. 35.
    Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734.  https://doi.org/10.2106/JBJS.G.01358 CrossRefGoogle Scholar
  36. 36.
    Jaecker V, Drouven S, Naendrup J-H, Kanakamedala AC, Pfeiffer T, Shafizadeh S (2018) Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction. Arch Orthop Trauma Surg 138(10):1423–1431.  https://doi.org/10.1007/s00402-018-2968-z CrossRefGoogle Scholar
  37. 37.
    Blanke F, Kiapour AM, Haenle M, Fischer J, Majewski M, Vogt S, Camathias C (2016) Risk of noncontact anterior cruciate ligament injuries is not associated with slope and concavity of the tibial plateau in recreational alpine skiers: a magnetic resonance imaging-based case-control study of 121 patients. Am J Sports Med 44(6):1508–1514.  https://doi.org/10.1177/0363546516632332 CrossRefGoogle Scholar
  38. 38.
    Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard J, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg British 93(11):1475–1478CrossRefGoogle Scholar
  39. 39.
    Hoteya K, Kato Y, Motojima S, Ingham SJ, Horaguchi T, Saito A, Tokuhashi Y (2011) Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 131(3):371–376.  https://doi.org/10.1007/s00402-010-1254-5 CrossRefGoogle Scholar
  40. 40.
    Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34(5):703–707.  https://doi.org/10.1007/s00264-010-0987-7 CrossRefGoogle Scholar
  41. 41.
    Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg, Sports Traumatol Arthrosc 21(4):804–815.  https://doi.org/10.1007/s00167-012-2166-4 CrossRefGoogle Scholar
  42. 42.
    Comerford EJ, Tarlton JF, Avery NC, Bailey AJ, Innes JF (2006) Distal femoral intercondylar notch dimensions and their relationship to composition and metabolism of the canine anterior cruciate ligament. Osteoarthritis Cartilage 14(3):273–278.  https://doi.org/10.1016/j.joca.2005.09.001 CrossRefGoogle Scholar
  43. 43.
    Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127(4):253–260.  https://doi.org/10.1007/s00402-006-0177-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xianyue Shen
    • 1
  • Jianlin Xiao
    • 1
  • Yuhui Yang
    • 2
  • Tong Liu
    • 1
  • Shangjun Chen
    • 3
  • Zhongli Gao
    • 1
  • Jianlin Zuo
    • 1
    Email author
  1. 1.Department of OrthopedicsChina-Japan Union Hospital of Jilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of OrthopedicsGuangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences)GuangzhouPeople’s Republic of China
  3. 3.Norman Bethune Medical SchoolJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations