Archives of Orthopaedic and Trauma Surgery

, Volume 139, Issue 7, pp 951–959 | Cite as

Long-term outcome after surgical treatment of intra-articular tibial plateau fractures in skiers

  • Martin BäumleinEmail author
  • Alexander Hanke
  • Boyko Gueorguiev
  • Michael Nerlich
  • Emmanouil Liodakis
  • Thomas Perren
  • Paavo Rillmann
  • Christian Ryf
  • Markus Loibl
Trauma Surgery



Tibial plateau fractures occur frequently during downhill skiing. There is a lack of information about the outcome and development of posttraumatic osteoarthritis after internal fixation of such fractures at long-term follow-up in skiers.

Materials and methods

A population of 83 skiers was followed up in a case series after internal fixation of intra-articular tibial plateau fractures AO-OTA 41 B1-B3 and C1-C3. Functional outcomes Visual Analog Scale, Tegner Activity Scale, Modified Lysholm Score, Hospital for Special Surgery (HSS) Knee Score and X-ray images of the affected knees (preoperative, postoperative and at time of follow-up) were obtained. Radiological evaluation focused on severity of osteoarthritis according to the Kellgren and Lawrence score of the lateral, medial and retropatellar knee compartments separately. Subgroup analyses for fracture type and age were performed separately.


Patients age was 49.8 ± 12.9 years (range 19–74 years) at the time of surgery, with a mean follow-up period of 10.3 ± 1.9 years (range 6–14 years). All tibial plateau fractures affected the lateral compartment, while the medial compartment was affected in addition as part of bicondylar fractures in two cases. Both the Tegener Activity Scale and Lysholm Score decreased significantly during the follow-up period and their median values dropped from 6 (range 3–7) to 5 (range 2–7) and from 100 (range 90–100) to 95 (range 58–100), respectively (both p < .01). The median clinical knee function at the time of follow-up revealed an HSS Knee Score of 96.5 points (range 74–100). Among the whole patient population, the radiological evaluation at follow-up revealed a significantly higher grade of osteoarthritis in all compartments of the knee joint compared to the time of the operation (p < .01). The grade of osteoarthritis in the lateral compartment was significantly higher than that in the medial and retropatellar compartments (p < .01).


In addition to physiologic aging, progression of radiologic signs of osteoarthritis following internal fixation of intra-articular tibial plateau fractures in an athletic population of skiers is most severe in the lateral knee compartment corresponding to fracture location. However, the long-term functional outcomes seem to be very satisfactory.


Tibia Fracture Skiers Osteoarthritis Outcome 



The authors thank all their patients for the participation and the staff of the Davos Hospital for support of this study.


There is no funding source.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the institutional review board.

Informed consent

Informed consent was obtained from all individual participants included in the study in accordance with the declaration of Helsinki.


  1. 1.
    Edlund G, Gedda S, Hemborg A (1980) Knee injuries in skiing: a prospective study from northern Sweden. Am J Sports Med 8(6):411–414. CrossRefGoogle Scholar
  2. 2.
    Hunter RE (1999) Skiing injuries. Am J Sports Med 27(3):381–389. CrossRefGoogle Scholar
  3. 3.
    Orapiriyakul W, Apivatthakakul T, Phornphutkul C (2018) Posterolateral tibial plateau fractures, how to buttress? Reversed L posteromedial or the posterolateral approach: a comparative cadaveric study. Arch Orthop Trauma Surg 138(4):505–513. CrossRefGoogle Scholar
  4. 4.
    Musahl V, Tarkin I, Kobbe P, Tzioupis C, Siska PA, Pape H-C (2009) New trends and techniques in open reduction and internal fixation of fractures of the tibial plateau. J Bone Joint Surg Br 91(4):426–433. CrossRefGoogle Scholar
  5. 5.
    Rasmussen PS (1973) Tibial condylar fractures. Impairment of knee joint stability as an indication for surgical treatment. J Bone Joint Surg Am 55(7):1331–1350CrossRefGoogle Scholar
  6. 6.
    Aktas E, Sener E, Gocun PU (2011) Mechanically induced experimental knee osteoarthritis benefits from anti-inflammatory and immunomodulatory properties of simvastatin via inhibition of matrix metalloproteinase-3. J Orthop Traumatol 12(3):145–151. CrossRefGoogle Scholar
  7. 7.
    Ebraheim NA, Sabry FF, Haman SP (2004) Open reduction and internal fixation of 117 tibial plateau fractures. Orthopedics 27(12):1281–1287Google Scholar
  8. 8.
    Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9(4):273–277CrossRefGoogle Scholar
  9. 9.
    Lansinger O, Bergman B, Körner L, Andersson GB (1986) Tibial condylar fractures. A twenty-year follow-up. J Bone Joint Surg Am 68(1):13–19CrossRefGoogle Scholar
  10. 10.
    Manidakis N, Dosani A, Dimitriou R, Stengel D, Matthews S, Giannoudis P (2010) Tibial plateau fractures: functional outcome and incidence of osteoarthritis in 125 cases. Int Orthop 34(4):565–570. CrossRefGoogle Scholar
  11. 11.
    Rademakers MV, Kerkhoffs GMMJ, Sierevelt IN, Raaymakers ELFB, Marti RK (2007) Operative treatment of 109 tibial plateau fractures: five- to 27-year follow-up results. J Orthop Trauma 21(1):5–10. CrossRefGoogle Scholar
  12. 12.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502CrossRefGoogle Scholar
  13. 13.
    Ryd L, Brittberg M, Eriksson K et al (2015) Pre-osteoarthritis. Cartilage 6(3):156–165. CrossRefGoogle Scholar
  14. 14.
    Marsh JL, Borrelli J, Dirschl DR, Sirkin MS (2007) Fractures of the tibial plafond. Instr Course Lect 56:331–352Google Scholar
  15. 15.
    Stevens DG, Beharry R, McKee MD, Waddell JP, Schemitsch EH (2001) The long-term functional outcome of operatively treated tibial plateau fractures. J Orthop Trauma 15(5):312–320CrossRefGoogle Scholar
  16. 16.
    Weigel DP, Marsh JL (2002) High-energy fractures of the tibial plateau. Knee function after longer follow-up. J Bone Joint Surg Am 84-A(9):1541–1551CrossRefGoogle Scholar
  17. 17.
    Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154CrossRefGoogle Scholar
  18. 18.
    Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14Google Scholar
  19. 19.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49Google Scholar
  20. 20.
    Pätzold R, Spiegl U, Wurster M et al (2013) Proximal tibial fractures sustained during alpine skiing - incidence and risk factors. Sportverletz Sportschaden 27(4):207–211. CrossRefGoogle Scholar
  21. 21.
    McAlindon TE, Snow S, Cooper C, Dieppe PA (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51(7):844–849CrossRefGoogle Scholar
  22. 22.
    Ballard BL, Antonacci JM, Temple-Wong MM et al (2012) Effect of tibial plateau fracture on lubrication function and composition of synovial fluid. J Bone Joint Surg Am 94(10):e64. CrossRefGoogle Scholar
  23. 23.
    Brandt KD, Dieppe P, Radin E (2009) Etiopathogenesis of osteoarthritis. Med Clin North Am 93(1):1–24. (xv) CrossRefGoogle Scholar
  24. 24.
    Messier SP (2008) Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management. Rheum Dis Clin North Am 34(3):713–729. CrossRefGoogle Scholar
  25. 25.
    Kraus TM (2012) Return to sports activity after tibial plateau fractures 89 cases with minimum 24-month follow-up. Am J Sports Med 40(12).
  26. 26.
    Briggs KK, Steadman JR, Hay CJ, Hines SL (2009) Lysholm Score and tegner activity level in individuals with normal knees. Am J Sports Med 37(5):898–901. CrossRefGoogle Scholar
  27. 27.
    Canadian Orthopaedic Trauma Society (2006) Open reduction and internal fixation compared with circular fixator application for bicondylar tibial plateau fractures. Results of a multicenter, prospective, randomized clinical trial. J Bone Joint Surg Am 88(12):2613–2623. CrossRefGoogle Scholar
  28. 28.
    Loibl M, Bäumlein M, Massen F et al (2013) Sports activity after surgical treatment of intra-articular tibial plateau fractures in skiers. Am J Sports Med 41(6):1340–1347. CrossRefGoogle Scholar
  29. 29.
    Driesman A, Fisher N, Konda SR, Pean CA, Leucht P, Egol KA (2017) Racial disparities in outcomes of operatively treated lower extremity fractures. Arch Orthop Trauma Surg 137(10):1335–1340. CrossRefGoogle Scholar
  30. 30.
    van Dreumel RLM, van Wunnik BPW, Janssen L, Simons PCG et al (2015) Mid- to long-term functional outcome after open reduction and internal fixation of tibial plateau fractures. Injury Int J Care Injured 46:1608–1612CrossRefGoogle Scholar
  31. 31.
    Timmers TK, van der Ven DJC, de Vries LS, van Olden GDJ (2014) Functional outcome after tibial plateau fracture osteosynthesis: a mean follow-up of 6 years. Knee 21(6):1210–1215. CrossRefGoogle Scholar
  32. 32.
    Wasserstein D, Henry P, Paterson JM, Kreder HJ, Jenkinson R (2014) Risk of total knee arthroplasty after operatively treated tibial plateau fracture: a matched-population-based cohort study. J Bone Joint Surg Am 96(2):144–150. CrossRefGoogle Scholar
  33. 33.
    Kalmet PHS, Van Horn YY, Sanduleanu S, Seelen HAM et al (2018) Patient-reported quality of life and pain after permissive weight bearing in surgically treated trauma patients with tibial plateau fractures: a retrospective cohort study. Arch Orthop Trauma Surg. Google Scholar
  34. 34.
    Gausden E, Garner MR, Fabricant PD, Warner SJ, Shaffer AD, Lorich DG (2017) Do clinical outcomes correlate with bone density after open reduction and internal fixation of tibial plateau fractures. Arch Orthop Trauma Surg 137(6):755–760. CrossRefGoogle Scholar
  35. 35.
    Dirschl DR, Adams GL (1997) A critical assessment of factors influencing reliability in the classification of fractures, using fractures of the tibial plafond as a model. J Orthop Trauma 11(7):471–476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Martin Bäumlein
    • 1
    • 2
    Email author
  • Alexander Hanke
    • 3
  • Boyko Gueorguiev
    • 4
  • Michael Nerlich
    • 3
  • Emmanouil Liodakis
    • 5
  • Thomas Perren
    • 2
  • Paavo Rillmann
    • 2
  • Christian Ryf
    • 2
  • Markus Loibl
    • 2
    • 3
  1. 1.Center for Orthopaedics and Trauma SurgeryUniversity Hospital Giessen and MarburgMarburgGermany
  2. 2.Department of Trauma SurgeryDavos HospitalDavosSwitzerland
  3. 3.Department of Trauma SurgeryRegensburg University Medical CenterRegensburgGermany
  4. 4.AO Research Institute DavosDavosSwitzerland
  5. 5.Trauma DepartmentHannover Medical School (MHH)HannoverGermany

Personalised recommendations