No added value using SPECT/CT to analyze persistent symptoms after anterior cruciate ligament reconstruction

  • Christian Egloff
  • Lukas Huber
  • Markus Wurm
  • Geert Pagenstert
Arthroscopy and Sports Medicine



To evaluate the diagnostic and clinical value of SPECT/CT compared to the standard algorithm for patients with persistent symptoms after anterior cruciate ligament reconstructions. The standard algorithm uses clinical information, conventional radiographs, MRI and CT scan, while the trial algorithm uses the same information but SPECT/CT in addition.


In a diagnostic comparative trial three experienced surgeons evaluated 23 consecutive patients with persistent symptoms after ACL reconstruction using first standard and second the trial algorithm with a time interval. Each rater had to establish a diagnosis and therapeutic decision with each algorithm. On MRI, graft continuity, bone marrow edema, chondral and meniscal lesions, femoral notch osteophytes were evaluated. Bone tracer uptake in SPECT/CT was anatomically analyzed and compared with MRI findings. MRI findings and SPECT/CT tracer uptake were correlated using Spearman’s rho test.


Additional SPECT/CT analysis did not change diagnosis in any case and did not correlate with clinical graft integrity. Treatment decisions remained unchanged as well. Chondral lesions, arthritic changes, meniscal lesions, graft impingement are best visualized in MRI and showed correspondent tracer uptake in SPECT/CT. Tunnel position was well classified with standard CT scan and showed no correlation with SPECT/CT tracer uptake.


Information derived by SPECT/CT in addition to the standard algorithm using clinical information, X-rays, MRI, and CT scan did not change the diagnosis or treatment plan. There is currently no justification to implement SPECT/CT for patients with persistent symptoms after anterior cruciate ligament reconstructions.

Level of evidence

Level II: diagnostic comparative study.


Knee ACL Anterior cruciate ligament SPECT/CT MRI 



Data collection and correlation analysis were mainly conducted by the medical student Lukas Huber under the guidance of the first author and final approval and initial set-up of the senior author. This work will be used to apply for the Medical Doctor degree of Lukas Huber (dissertation at the University of Basel, Switzerland).


There is no funding source.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L (2008) Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med 36(2):308–315. CrossRefGoogle Scholar
  2. 2.
    Lind M, Menhert F, Pedersen AB (2009) The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 17(2):117–124. CrossRefGoogle Scholar
  3. 3.
    Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217. CrossRefGoogle Scholar
  4. 4.
    Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, Bussiere C, Ehkirch FP, Burdin G, Dubrana F, Beaufils P, Franceschi JP, Chassaing V, Colombet P, Neyret P (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 19(2):196–201. CrossRefGoogle Scholar
  5. 5.
    Finsterbush A, Frankl U, Matan Y, Mann G (1990) Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 18(5):475–479. CrossRefGoogle Scholar
  6. 6.
    Araki D, Kuroda R, Matsumoto T, Nagamune K, Matsushita T, Hoshino Y, Oka S, Nishizawa Y, Kurosaka M (2014) Three-dimensional analysis of bone tunnel changes after anatomic double-bundle anterior cruciate ligament reconstruction using multidetector-row computed tomography. Am J Sports Med 42(9):2234–2241. CrossRefGoogle Scholar
  7. 7.
    Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP (2007) Radiographic measurements of the intercondylar notch: are they accurate? Arthrosc J Arthrosc Relat Surg 23(3):261–268. (268 e261–262) CrossRefGoogle Scholar
  8. 8.
    Marchant MH Jr, Willimon SC, Vinson E, Pietrobon R, Garrett WE, Higgins LD (2010) Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(8):1059–1064. CrossRefGoogle Scholar
  9. 9.
    Van Eck CF, Martins CA, Kopf S, Lertwanich P, Fu FH, Tashman S (2011) Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthrosc J Arthrosc Relat Surg 27(2):207–212. CrossRefGoogle Scholar
  10. 10.
    Biercevicz AM, Akelman MR, Fadale PD, Hulstyn MJ, Shalvoy RM, Badger GJ, Tung GA, Oksendahl HL, Fleming BC (2015) MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med 43(3):693–699. CrossRefGoogle Scholar
  11. 11.
    Bencardino JT, Beltran J, Feldman MI, Rose DJ (2009) MR imaging of complications of anterior cruciate ligament graft reconstruction. Radiogr Rev 29(7):2115–2126. Google Scholar
  12. 12.
    Hirschmann MT, Mathis D, Afifi FK, Rasch H, Henckel J, Amsler F, Wagner CR, Friederich NF, Arnold MP (2013) Single photon emission computerized tomography and conventional computerized tomography (SPECT/CT) for evaluation of patients after anterior cruciate ligament reconstruction: a novel standardized algorithm combining mechanical and metabolic information. Knee Surg Sports Traumatol Arthrosc 21(4):965–974. CrossRefGoogle Scholar
  13. 13.
    Knupp M, Pagenstert GI, Barg A, Bolliger L, Easley ME, Hintermann B (2009) SPECT–CT compared with conventional imaging modalities for the assessment of the varus and valgus malaligned hindfoot. J Orthop Res 27(11):1461–1466. CrossRefGoogle Scholar
  14. 14.
    Ryan PJ, Reddy K, Fleetcroft J (1998) A prospective comparison of clinical examination, MRI, bone SPECT, and arthroscopy to detect meniscal tears. Clin Nucl Med 23(12):803–806CrossRefGoogle Scholar
  15. 15.
    Tahmasebi MN, Saghari M, Moslehi M, Gholamrezanezhad A (2005) Comparison of SPECT bone scintigraphy with MRI for diagnosis of meniscal tears. BMC Nucl Med 5(1):2. CrossRefGoogle Scholar
  16. 16.
    Rechsteiner J, Hirschmann MT, Dordevic M, Falkowski AL, Testa EA, Amsler F, Hirschmann A (2018) Meniscal pathologies on MRI correlate with increased bone tracer uptake in SPECT/CT. Eur Radiol 28(11):4696–4704. CrossRefGoogle Scholar
  17. 17.
    Hirschmann MT, Davda K, Rasch H, Arnold MP, Friederich NF (2011) Clinical value of combined single photon emission computerized tomography and conventional computer tomography (SPECT/CT) in sports medicine. Sports Med Arthrosc Rev 19(2):174–181. CrossRefGoogle Scholar
  18. 18.
    Leumann A, Valderrabano V, Plaass C, Rasch H, Studler U, Hintermann B, Pagenstert GI (2011) A novel imaging method for osteochondral lesions of the talus—comparison of SPECT–CT with MRI. Am J Sports Med 39(5):1095–1101. CrossRefGoogle Scholar
  19. 19.
    Hirschmann MT, Mathis D, Rasch H, Amsler F, Friederich NF, Arnold MP (2013) SPECT/CT tracer uptake is influenced by tunnel orientation and position of the femoral and tibial ACL graft insertion site. Int Orthop 37(2):301–309. CrossRefGoogle Scholar
  20. 20.
    Duc SR, Zanetti M, Kramer J, Kach KP, Zollikofer CL, Wentz KU (2005) Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoronal images. Acta Radiol 46(7):729–733CrossRefGoogle Scholar
  21. 21.
    Speer KP, Spritzer CE, Bassett FH III, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389CrossRefGoogle Scholar
  22. 22.
    Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E, International Cartilage Repair S (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Jt Surg Am 85-A(Suppl 2):45–57CrossRefGoogle Scholar
  23. 23.
    Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21 (discussion 21-12) Google Scholar
  24. 24.
    Sommer C, Friederich NF, Muller W (2000) Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 8(4):207–213. CrossRefGoogle Scholar
  25. 25.
    Hosseini A, Lodhia P, Van de Velde SK, Asnis PD, Zarins B, Gill TJ, Li G (2012) Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 36(4):845–852. CrossRefGoogle Scholar
  26. 26.
    Amis AA, Beynnon B, Blankevoort L, Chambat P, Christel P, Durselen L, Friederich N, Grood E, Hertel P, Jakob R et al (1994) Proceedings of the ESSKA scientific workshop on reconstruction of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 2(3):124–132CrossRefGoogle Scholar
  27. 27.
    Amis AA, Jakob RP (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S2–S12. CrossRefGoogle Scholar
  28. 28.
    Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc 2(3):138–146CrossRefGoogle Scholar
  29. 29.
    O’Duffy EK, Clunie GP, Gacinovic S, Edwards JC, Bomanji JB, Ell PJ (1998) Foot pain: specific indications for scintigraphy. Br J Rheumatol 37(4):442–447CrossRefGoogle Scholar
  30. 30.
    Cronbach L (1951) Coefficient alpha as a measure of test score. Psychometrika 16:297–334CrossRefGoogle Scholar
  31. 31.
    Group M, Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK, Allen CR, Cooper DE, DeBerardino TM, Lantz BB, Mann BJ, Stuart MJ (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38(10):1979–1986. CrossRefGoogle Scholar
  32. 32.
    Mathis DT, Hirschmann A, Falkowski AL, Kiekara T, Amsler F, Rasch H, Hirschmann MT (2017) Increased bone tracer uptake in symptomatic patients with ACL graft insufficiency: a correlation of MRI and SPECT/CT findings. Knee Surg Sports Traumatol Arthrosc. Google Scholar
  33. 33.
    Mathis DT, Hirschmann A, Falkowski AL, Kiekara T, Amsler F, Rasch H, Hirschmann MT (2018) Increased bone tracer uptake in symptomatic patients with ACL graft insufficiency: a correlation of MRI and SPECT/CT findings. Knee Surg Sports Traumatol Arthrosc 26(2):563–573. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christian Egloff
    • 1
  • Lukas Huber
    • 2
  • Markus Wurm
    • 3
  • Geert Pagenstert
    • 4
    • 5
    • 6
  1. 1.Department of Orthopedics and TraumatologyUniversity Hospital BaselBaselSwitzerland
  2. 2.University of BaselBaselSwitzerland
  3. 3.Department of Orthopaedic Sports MedicineTechnische Universität München (TUM)MunichGermany
  4. 4.Department of Clinical ResearchUniversity of BaselBaselSwitzerland
  5. 5.Clarahof Clinic of Orthopaedic SurgeryMerian-Iselin-Hospital Swiss Olympic Medical CenterBaselSwitzerland
  6. 6.Knee Institute BaselBaselSwitzerland

Personalised recommendations