Advertisement

Evaluation of the permissible maximum angle of the tibial tunnel in transtibial anatomic posterior cruciate ligament reconstruction by computed tomography

  • Yuanjun Teng
  • Xiaohui Zhang
  • Chongwen Ma
  • Haosen Wu
  • Rui Li
  • Hong Wang
  • Hua Han
  • Yayi Xia
Arthroscopy and Sports Medicine
  • 5 Downloads

Abstract

Introduction

Excessive angle of the tibial tunnel may cause breakage of the posterior cortex in transtibial anatomic posterior cruciate ligament (PCL) reconstruction. However, a few studies have determined the permissible maximum angle of the tibial tunnel. The purpose of this study was to determine the permissible maximum angle of the tibial tunnel relative to the tibial plateau in transtibial anatomic PCL reconstruction and characterize the anatomic parameters of the tibial PCL attachment position.

Materials and methods

Computed tomography (CT) scans of a consecutive series of 408 adult knees with normal PCL attachment were measured. The parameters measured were the permissible maximum angle (PMA) of the 10 mm-diameter tibial tunnel relative to the tibial plateau, the distance from the anterior orifice of the tibial tunnel to the tibial tuberosity (OTD), the anterior–posterior diameter (APD) of the tibial plateau, the distance from the center of PCL attachment site to the posterior edge of the tibial plateau (PPED), and the angle between the tibial plateau and the posterior tibial slope where the PCL insertion site was (PSA). Subgroup analysis was performed to determine the correlations between parameters, and sex, age, and height. The measurement reliability was evaluated by intraclass correlation coefficients (ICCs).

Results

The average value of PMA was 48.2 ± 5.4°, and it was not affected by sex, age, and height (P > 0.05). The values of OTD, APD, PPED, PSA, and height were significantly higher in males than females (OTD, P < 0.01; APD, P < 0.01; PPED, P < 0.01; PSA, P = 0.019; height, P < 0.01). With regard to age, we stratified the cases into three groups: the young (18–30 years old), the middle-aged (31–45 years old), and the elderly (46–60 years old). The mean value of OTD, APD, and height were significantly lower in the elderly than that in the middle-aged (P < 0.01, P < 0.01, P < 0.01, respectively). With regard to height, we stratified the cases into three groups: ~ 1.65 m (1), 1.66 ~ 1.75 m (2), and 1.76 m ~ (3). The mean value of OTD, APD, and PPED significantly increased with height, P < 0.05. The mean value of PSA was significant higher in II group than that in I group (P = 0.034).

Conclusions

There should be a limit to the angle of the tibial tunnel in transtibial anatomic PCL reconstruction to prevent the fracture of posterior tunnel wall. The permissible maximum angle (PMA) of the 10 mm-diameter tibial tunnel relative to the tibial plateau was 48.2°. Besides, the determination of the value of OTD, APD, PPED, and PSA could provide a clinical reference to insertion site, depth, and angle of the tibial drill guide in PCL reconstruction.

Keywords

PCL reconstruction Tibial tunnel Maximum angle Computed tomography 

Notes

Funding

This study was financially supported by the Natural Science Foundation of China [81874017], the Cuiying Science and Technology Innovation Project of Lanzhou University Second Hospital [CY2017-ZD02; CY2017-QN12], and the Cuiying Scientific Training Program for Undergraduates of Lanzhou University Second Hospital [CYXZ-32].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

402_2018_3092_MOESM1_ESM.xlsx (70 kb)
Supplementary material 1 (XLSX 70 KB)

References

  1. 1.
    Voos JE, Mauro CS, Wente T, Warren RF, Wickiewicz TL (2012) Posterior cruciate ligament: anatomy, biomechanics, and outcomes. Am J Sports Med 40(1):222–231.  https://doi.org/10.1177/0363546511416316 CrossRefGoogle Scholar
  2. 2.
    Teng Y, Guo L, Wu M, Xu T, Zhao L, Jiang J, Sheng X, Xu L, Zhang B, Ding N, Xia Y (2016) MRI analysis of tibial PCL attachment in a large population of adult patients: reference data for anatomic PCL reconstruction. BMC Musculoskelet Disord 17(1):384.  https://doi.org/10.1186/s12891-016-1232-3 CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Logan M, Williams A, Lavelle J, Gedroyc W, Freeman M (2004) The effect of posterior cruciate ligament deficiency on knee kinematics. Am J Sports Med 32(8):1915–1922CrossRefGoogle Scholar
  4. 4.
    Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W (2007) Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy 23(10):1104–1111.  https://doi.org/10.1016/j.arthro.2007.04.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Rousseau R, Makridis KG, Pasquier G, Miletic B, Djian P (2017) Recurrent posterior knee laxity: diagnosis, technical aspects and treatment algorithm. Knee Surg Sports Traumatol Arthrosc 25(10):3046–3052.  https://doi.org/10.1007/s00167-016-4085-2 CrossRefGoogle Scholar
  6. 6.
    Chahla J, Moatshe G, Cinque ME, Dornan GJ, Mitchell JJ, Ridley TJ, LaPrade RF (2017) Single-bundle and double-bundle posterior cruciate ligament reconstructions: a systematic review and meta-analysis of 441 patients at a minimum 2 years’ follow-up. Arthroscopy 33(11):2066–2080.  https://doi.org/10.1016/j.arthro.2017.06.049 CrossRefGoogle Scholar
  7. 7.
    Gill TJt, Van de Velde SK, Carroll KM, Robertson WJ, Heyworth BE (2012) Surgical technique: aperture fixation in PCL reconstruction: applying biomechanics to surgery. Clin Orthop Relat Res 470(3):853–860.  https://doi.org/10.1007/s11999-011-2100-y CrossRefGoogle Scholar
  8. 8.
    Hermans S, Corten K, Bellemans J (2009) Long-term results of isolated anterolateral bundle reconstructions of the posterior cruciate ligament: a 6- to 12-year follow-up study. Am J Sports Med 37(8):1499–1507.  https://doi.org/10.1177/0363546509333479 CrossRefGoogle Scholar
  9. 9.
    Denti M, Tornese D, Melegati G, Schonhuber H, Quaglia A, Volpi P (2015) Combined chronic anterior cruciate ligament and posterior cruciate ligament reconstruction: functional and clinical results. Knee Surg Sports Traumatol Arthrosc 23(10):2853–2858.  https://doi.org/10.1007/s00167-015-3764-8 CrossRefGoogle Scholar
  10. 10.
    Lee YS, Lee SH, Lee OS (2018) Graft sources do not affect to the outcome of transtibial posterior cruciate ligament reconstruction: a systematic review. Arch Orthop Trauma Surg 138(8):1103–1116.  https://doi.org/10.1007/s00402-018-2946-5 CrossRefGoogle Scholar
  11. 11.
    Ettinger M, Buermann S, Calliess T, Omar M, Krettek C, Hurschler C, Jagodzinski M, Petri M (2013) Tibial inlay press-fit fixation versus interference screw in posterior cruciate ligament reconstruction. Orthop Rev (Pavia) 5(4):e35.  https://doi.org/10.4081/or.2013.e35 CrossRefGoogle Scholar
  12. 12.
    Ochiai S, Hagino T, Senga S, Yamashita T, Haro H (2018) Treatment outcome of reconstruction for isolated posterior cruciate injury: subjective and objective evaluations. J Knee Surg.  https://doi.org/10.1055/s-0038-1653947 CrossRefGoogle Scholar
  13. 13.
    Kim YM, Lee CA, Matava MJ (2011) Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 39(2):425–434.  https://doi.org/10.1177/0363546510374452 CrossRefGoogle Scholar
  14. 14.
    May JH, Gillette BP, Morgan JA, Krych AJ, Stuart MJ, Levy BA (2010) Transtibial versus inlay posterior cruciate ligament reconstruction: an evidence-based systematic review. J Knee Surg 23(2):73–79CrossRefGoogle Scholar
  15. 15.
    Li Y, Zhang J, Song G, Li X, Feng H (2016) The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol 3:13–18.  https://doi.org/10.1016/j.asmart.2015.12.001 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lee YS, Jung YB (2013) Posterior cruciate ligament: focus on conflicting issues. Clin Orthop Surg 5(4):256–262.  https://doi.org/10.4055/cios.2013.5.4.256 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y (2005) Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy 21(8):970–978.  https://doi.org/10.1016/j.arthro.2005.05.025 CrossRefGoogle Scholar
  18. 18.
    Lee YS, Ra HJ, Ahn JH, Ha JK, Kim JG (2011) Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement. Arthroscopy 27(2):182–187.  https://doi.org/10.1016/j.arthro.2010.06.024 CrossRefGoogle Scholar
  19. 19.
    Frank RM, Seroyer ST, Lewis PB, Bach BR, Verma NN (2010) MRI analysis of tibial position of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18(11):1607–1611.  https://doi.org/10.1007/s00167-010-1192-3 CrossRefGoogle Scholar
  20. 20.
    Osti M, Tschann P, Kunzel KH, Benedetto KP (2012) Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament. Am J Sports Med 40(7):1558–1563.  https://doi.org/10.1177/0363546512445166 CrossRefGoogle Scholar
  21. 21.
    Kim SJ, Kim TE, Jo SB, Kung YP (2009) Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Jt Surg Am 91(11):2543–2549.  https://doi.org/10.2106/JBJS.H.01819 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuanjun Teng
    • 1
    • 2
  • Xiaohui Zhang
    • 1
    • 2
  • Chongwen Ma
    • 1
    • 2
  • Haosen Wu
    • 1
    • 2
  • Rui Li
    • 1
    • 2
  • Hong Wang
    • 1
    • 2
  • Hua Han
    • 1
    • 2
  • Yayi Xia
    • 1
    • 2
  1. 1.Department of OrthopaedicsLanzhou University Second Hospital, Lanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.The Second Clinical Medical College of Lanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations