Archives of Orthopaedic and Trauma Surgery

, Volume 138, Issue 11, pp 1533–1539 | Cite as

Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs

  • Joan MiquelEmail author
  • F. Santana
  • E. Palau
  • M. Vinagre
  • K. Langohr
  • A. Casals
  • C. Torrens
Trauma Surgery



We aimed to biomechanically evaluate the effect of the supraspinatus tendon on tuberosity stability using two different reverse shoulder arthroplasty (RSA) models for complex proximal humeral fractures (PHFs).


Four-part proximal humeral fractures were simulated in 20 cadaveric shoulders. Two different RSA designs were implemented: a glenosphere-medialized model and a glenosphere-lateralized model. Tuberosities were reconstructed, and displacement of bony fragments was measured (mm) by placing three sensors: in the humeral diaphysis (D), in the greater tuberosity (GT), and in the lesser tuberosity (LT). Axial forces were induced and measured in Newton (N). The test was performed twice in each specimen, with and without the supraspinatus tendon. The regression line (RL) was measured in mm/N.


In the medialized model, the GT–D displacement was greater in the supraspinatus preserving model than that in the tendon excision model (p < 0.001), as well as for the LT–D displacement (p < 0.001). In the lateralized model, GT–D displacement and GT–LT distance were greater in the preserving model than that in the excision model (p < 0.001, p = 0.04).


The supraspinatus tendon resection leads to a more biomechanically stable tuberosity construct when performing RSA for PHFs, while the rest of the rotator cuff tendons (infraspinatus and teres minor) are retained in the greater tuberosity.

Level of evidence

Basic science study. Cadaveric study.


Tuberosity reconstruction Reverse shoulder arthroplasty Supraspinatus Cadaveric study Rotator cuff excision Complex proximal humeral fractures 


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

402_2018_3016_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 22 KB)


  1. 1.
    Acevedo DC, Mann T, Abboud JA, Getz C, Baumhauer JF, Voloshin I (2014) Reverse total shoulder arthroplasty for the treatment of proximal humeral fractures: patterns of use among newly trained orthopedic surgeons. J Shoulder Elbow Surg 23:1363–1367. CrossRefPubMedGoogle Scholar
  2. 2.
    Bufquin T, Hersan A, Hubert L, Massin P (2007) Reverse shoulder arthroplasty for the treatment of three-and four-part fractures of the proximal humerus in the elderly a prospective review of 43 cases with a short-term follow-up. J Bone Joint Surg [Br] 89:516–520. CrossRefGoogle Scholar
  3. 3.
    Sebastiá-Forcada E, Cebrián-Gomez R, Lizaur-Utrilla A, Gil-Guillen V (2014) Reverse shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures. A blinded, randomized, controlled, prospective study. J Shoulder Elbow 23:1419–1426. CrossRefGoogle Scholar
  4. 4.
    Boileau P, Watkinson DJ, Hatzidakis AM, Balg F (2005) Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg 14:147–161. CrossRefGoogle Scholar
  5. 5.
    Grammont PM, Trouilloud P, Laffay JPDX (1987) Etude et realisation d’une novelle prothese d’epaule. Rhumatologie 39:17–22Google Scholar
  6. 6.
    Cuff D, Pupello D, Virani N, Levy JFM (2008) Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency. J Bone Joint Surg Am 90:1244–1251. CrossRefPubMedGoogle Scholar
  7. 7.
    Gutierrez S, Levy JC, Lee WE 3rd, Keller TSMM (2007) Center of rotation affects abduction range of motion of reverse shoulder arthropl. Clin Orthop Relat Res 458:78–82. CrossRefPubMedGoogle Scholar
  8. 8.
    Boileau P, Moineau G, Roussanne YOK (2011) Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 469:2558–2567. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cazeneuve JF, Cristofari DJ (2010) The reverse shoulder prosthesis in the treatment of fractures of the proximal humerus in the elderly. J Bone Joint Surg 92B:535–539. CrossRefGoogle Scholar
  10. 10.
    Boileau P, Pennington SD, Alami G (2011) Proximal humeral fractures in younger patients: fixation techniques and arthroplasty. J Shoulder Elbow Surg 20:47–60. CrossRefGoogle Scholar
  11. 11.
    Formaini NT, Everding NG, Levy JC, Rosas S (2015) Tuberosity healing after reverse shoulder arthroplasty for acute proximal humerus fractures: the “black and tan” technique. J Shoulder Elbow Surg 24:299–306. CrossRefGoogle Scholar
  12. 12.
    Gallinet D, Adam A, Gasse N, Rochet S, Obert L (2013) Improvement in shoulder rotation in complex shoulder fractures treated by reverse shoulder arthroplasty. J Shoulder Elbow Surg 22:38–44. CrossRefPubMedGoogle Scholar
  13. 13.
    Uzer G, Yildiz F, Batar S, Binlaksar R, Elmadag M, Kus G, Bilsel K (2017) Does grafting of the tuberosities improve the functional outcomes of proximal humeral fractures treated with reverse shoulder arthroplasty? J Shoulder Elbow Surg 26:36–41. CrossRefPubMedGoogle Scholar
  14. 14.
    Chun Y-M, Kim D-S, Lee D-H, Shin S-J (2017) Reverse shoulder arthroplasty for four-part proximal humerus fracture in elderly patients: can a healed tuberosity improve the functional outcomes? J Shoulder Elbow Surg 26:1216–1221. CrossRefPubMedGoogle Scholar
  15. 15.
    Frankle MA, Ondrovic LE, Markee BA, Harris ML, Iii WEL (2001) Stability of tuberosity reattachment in proximal humeral hemiarthroplasty. J Shoulder Elbow Surg 11:413–420. CrossRefGoogle Scholar
  16. 16.
    Frankle MA, Greenwald DP, Markee BA, Ondrovic LE, Lee WE (2001) Biomechanical effects of malposition of tuberosity fragments on the humeral prosthetic reconstruction for four-part proximal humerus fractures. J Shoulder Elbow Surg 10:321–326. CrossRefPubMedGoogle Scholar
  17. 17.
    Gulotta LV, Choi D, Marinello P, Knutson Z, Lipman J, Wright T et al (2012) Humeral component retroversion in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 21:1121–1127. CrossRefPubMedGoogle Scholar
  18. 18.
    Chaffin DB, Andersson GBJ, Martin BJ (1999) Occupational biomechanics. Wiley, New YorkGoogle Scholar
  19. 19.
    Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA (1997) Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy 13:172CrossRefGoogle Scholar
  20. 20.
    Grassi FA, Zorzolo I (2014) Reverse shoulder arthroplasty without subscapularis repair for the treatment of proximal humeral fractures in the elderly. Musculoskelet Surg 98:5–13. CrossRefPubMedGoogle Scholar
  21. 21.
    Anakwenze OA, Zoller S, Ahmad CS, Levine WN (2014) Reverse shoulder arthroplasty for acute proximal humerus fractures: a systematic review. J Shoulder Elbow Surg 23:73–80. CrossRefGoogle Scholar
  22. 22.
    Levy JCBB (2011) Reverse shoulder prosthesis for acute four-part fracture: tuberosity fixation using a horseshoe graft. J Orthop Trauma 25:318–324. CrossRefPubMedGoogle Scholar
  23. 23.
    Hoenecke HR, Flores-Hernandez C, D’Lima DD (2014) Reverse total shoulder arthroplasty component center of rotation affects muscle function. J Shoulder Elbow Surg 23:1128–1135. CrossRefPubMedGoogle Scholar
  24. 24.
    Giles JW, Langohr GDG, Johnson JA, Athwal GS (2016) The rotator cuff muscles are antagonists after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 25:1592–1600. CrossRefPubMedGoogle Scholar
  25. 25.
    Giles JW, Langohr GDG, Johnson JAAG (2015) Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res 473:3615–3626. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Joan Miquel
    • 1
    Email author
  • F. Santana
    • 2
  • E. Palau
    • 3
  • M. Vinagre
    • 4
  • K. Langohr
    • 5
    • 6
  • A. Casals
    • 4
    • 7
  • C. Torrens
    • 2
  1. 1.Orthopaedics and Trauma DepartmentConsorci Sanitari de l’AnoiaIgualadaSpain
  2. 2.Orthopaedics and Trauma DepartmentParc de Salut Mar. Barcelona, Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Orthopaedics and Trauma DepartmentHospital de ViladecansBarcelonaSpain
  4. 4.Center of Research of Biomedical Engineering Universitat Politècnica de CatalunyaBarcelonaSpain
  5. 5.Integrative Pharmacology and Systems Neuroscience Research GroupNeurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
  6. 6.Department of Statistics and Operations ResearchUniversitat Politècnica de Barcelona/BarcelonatechBarcelonaSpain
  7. 7.Institute for Bioenginering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBarcelonaSpain

Personalised recommendations