Advertisement

Molecular characterization of histopathological ependymoma variants

  • Julia E. NeumannEmail author
  • Michael Spohn
  • Denise Obrecht
  • Martin Mynarek
  • Christian Thomas
  • Martin Hasselblatt
  • Mario M. Dorostkar
  • Annika K. Wefers
  • Stephan Frank
  • Camelia-Maria Monoranu
  • Arend Koch
  • Hendrik Witt
  • Marcel Kool
  • Kristian W. Pajtler
  • Stefan Rutkowski
  • Markus Glatzel
  • Ulrich SchüllerEmail author
Original Paper

Abstract

According to the WHO classification, ependymal tumors are classified as subependymomas, myxopapillary ependymomas, classic ependymomas, anaplastic ependymomas, and RELA-fusion-positive ependymomas (RELA-EPN). Among classic ependymomas, the WHO defines rare histological variants, i.e., the clear cell, papillary, and tanycytic ependymoma. In parallel, global DNA methylation patterns distinguish nine molecular groups, some of which tightly overlap with histopathological subgroups. However, the match of the aforementioned histological variants to DNA methylation classes remains unclear. We analyzed histomorphology, clinical parameters, and global DNA methylation of tumors with the initial histological diagnoses of tanycytic (n = 12), clear cell (n = 14), or papillary ependymoma (n = 19). Forty percent of these tumors did not match to the epigenetic profile of ependymomas, using a previously published DNA methylation-based classifier for brain tumors. Instead, they were classified as low-grade glioma (n = 3), plexus tumor (n = 2), CNS high-grade neuroepithelial tumor with MN1 alteration (n = 2), papillary tumor of the pineal region (n = 2), neurocytoma (n = 1), or did not match to any known brain tumor methylation class (n = 8). Overall, integrated diagnosis had to be changed in 35.6% of cases as compared to the initial diagnosis. Among the tumors molecularly classified as ependymoma (27/45 cases), tanycytic ependymomas were mostly located in the spine (5/7 cases) and matched to spinal or myxopapillary ependymoma. 6/8 clear cell ependymomas were found supratentorially and fell into the methylation class of RELA-EPN. Papillary ependymomas with a positive ependymoma match (12/19 cases) showed either a “papillary” (n = 5), a “trabecular” (n = 1), or a “pseudo-papillary” (n = 6) growth pattern. The papillary growth pattern was strongly associated with the methylation class B of posterior fossa ependymoma (PFB, 5/5 cases) and tumors displayed DNA methylation sites that were significantly different when compared to PFB ependymomas without papillary growth. Tumors with pseudo-papillary histology matched to the methylation class of myxopapillary ependymoma (4/6 cases), whereas the trabecular case was anatomically and molecularly a spinal ependymoma. Our results show that the diagnosis of histological ependymoma variants is challenging and epigenetic profiles may improve diagnostic accuracy of these cases. Whereas clear cell and papillary ependymomas display correlations between localization, histology, and methylation, tanycytic ependymoma does not represent a molecularly distinct subgroup.

Keywords

Ependymoma Tanycytic Clear cell Papillary RELA PFB 

Notes

Acknowledgements

We thank Anne Reichstein for her dedication and excellent technical support concerning the DNA-methylation analyses. We also thank Ulrike Rumpf, Hannelore Junker-Polzin, Carolina Janko, Tasja Lempertz, and Celina Liza Soltwedel for excellent technical support with tissue sections and stainings. J.N. was supported by the Else-Kröner Fresenius Stiftung and the UKE Nachwuchsförderung. This project was generously funded by the Gert and Susanna Mayer Stiftung. U.S. was supported by the Fördergemeinschaft Kinderkrebszentrum Hamburg.

Supplementary material

401_2019_2090_MOESM1_ESM.pdf (49.7 mb)
Supplementary Fig. 1: t-SNE plot including the 45 cases analyzed in this study that were plotted with brain tumor samples of 82 published CNS tumor methylation classes and with cases of nine control tissue methylation classes (n = 2801 [3]). Supplementary Fig. 2: Histomorphology of cases diagnosed as tanycytic ependymoma that did not match to any molecular ependymoma group based on DNA methylation. (a–d) H&E stainings. Scale bar in a is 50 μm for a–d. (a) Case #9 showed astrocytic tumor cells arranged around vessels. No clear pseudorosettes were detected. (b) Case #10 was suggestive of a low-grade glioma with abundant and evenly distributed small round calcifications (see arrows). (c) Case #11 impressed as an ependymoma with tanycytic morphology. (d) Case #12 showed a fibrillary tanycytic pattern with hyalinized vessels (see arrows). Supplementary Fig. 3: Histomorphology of cases diagnosed as clear cell ependymoma that did not match to any molecular ependymoma group based on DNA methylation. (a–f) H&E stainings. Scale bar in a is 50 μm for a–f. (a) Case #21 showed slightly pleomorphic tumor cells with clear cell morphology (left panel) and areas with ependymal pseudorosettes (right panel), being compatible with a clear cell ependymoma. (b) Case 22 showed thin capillaries, small oligodendroglia-like cells and some larger cells suggestive of “floating neurons” (see arrow). (c,d) Cases #23 and #24 impressed as uniformly clear cell tumors without papillary structures. (e) Clear cells with accentuated cell boundaries and nuclei free vascular spaces. (f) Uniform round cells and calcifications (see arrow), well compatible with a neurocytoma. Supplementary Fig. 4: Molecular characteristics of RELA-fusion-positive ependymoma comparing cases with (n = 6) or without clear cell morphology (n = 65). (a) Unsupervised hierarchical clustering of RELA-fusion-positive ependymoma cases with or without clear cell morphology based on 3 significantly differentially methylated CpG sites (FDR < 0.1, delta beta value ≥ 0.2) did not reveal distinct clusters. Details on all 4 significantly differentially methylated CpG sites can be found in supplementary Table 1. (b) t-SNE plot of RELA-fusion-positive ependymomas. Cases with clear cell morphology (n = 6) located scattered among cases without clear cell morphology (n = 65) (c) Stacked integrated copy number plots of cases with or without clear cell morphology showed similar chromosomal alterations. RELA, NCCM = RELA-fusion-positive ependymoma, clear cell morphology. RELA, NCCM = RELA-fusion-positive ependymoma, no clear cell morphology. FDR = false discovery rate. Supplementary Fig. 5: Histomorphology of cases diagnosed as papillary ependymoma that did not match to any molecular ependymoma group based on DNA methylation. (a–g) H&E stainings. Scale bar in a is 50 μm for a–g. (a,d,e) Cases #39, 42 and 43 showed a pseudo-papillary picture with hyalizined vessels being present in cases #42 and 43. (b) Papillary growing tumor, slightly suggestive of plexus tissue, well compatible with a plexus tumor. (c) Case #41 was a highly vascularized tumor with nuclei free areas and circular arrangement of tumor cells around vessels. (f) Case #44 showed abundant trabecular structures resembling ependymal canals. (g) Case #45 showed tumor cell nests within a myxoid matrix. Supplementary Fig. 6: Molecular characteristics of posterior fossa group B ependymoma, comparing papillary morphology (n = 5) with non-papillary morphology (n = 15). (a) t-SNE plot showing cases with papillary morphology or non-papillary morphology including a data set of published posterior fossa group B ependymoma [5]. Histomorphology was not associated with one of the published 5 subtypes of posterior fossa group B ependymoma [5]. (b) Stacked integrated copy number plots of cases with papillary morphology or non-papillary morphology showed common chromosomal alterations but papillary ependymomas lacked gain of chromosome 11. PFB1-5 = posterior fossa group B ependymoma, subtypes 1-5. (PDF 50941 kb)
401_2019_2090_MOESM2_ESM.xlsx (689 kb)
Supplementary material 2 (XLSX 688 kb)

References

  1. 1.
    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30:1363–1369.  https://doi.org/10.1093/bioinformatics/btu049 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burger PCSB, Kleinschmidt-DeMasters B, Tihan T, Rodriguez F et al (2016) Diagnostic pathology: neuropathology. Diagnostic pathology series, 2nd ednGoogle Scholar
  3. 3.
    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474.  https://doi.org/10.1038/nature26000 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M et al (2018) Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 136:181–210.  https://doi.org/10.1007/s00401-018-1879-y CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cavalli FMG, Hubner JM, Sharma T, Luu B, Sill M, Zapotocky M et al (2018) Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol 136:227–237.  https://doi.org/10.1007/s00401-018-1888-x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cepeda S, Hernandez-Lain A, Munarriz PM, Martinez Gonzalez MA, Lagares A (2014) Spinal tanycytic ependymoma associated with neurofibromatosis type 2. Clin Neuropathol 33:311–314.  https://doi.org/10.5414/NP300704 CrossRefPubMedGoogle Scholar
  7. 7.
    Chaudhuri PM, Chakrabarty D, Chaudhuri S, Chatterjee U (2019) Papillary ependymoma of the spinal cord: a case report with summary of prior published cases. Asian J Neurosurg 14:223–226.  https://doi.org/10.4103/ajns.AJNS_250_17 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T et al (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632.  https://doi.org/10.1016/S0002-9440(10)65158-9 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Figarella-Branger D, Lechapt-Zalcman E, Tabouret E, Junger S, de Paula AM, Bouvier C et al (2016) Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro Oncol 18:919–927.  https://doi.org/10.1093/neuonc/now025 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fukuoka K, Kanemura Y, Shofuda T, Fukushima S, Yamashita S, Narushima D et al (2018) Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathol Commun 6:134.  https://doi.org/10.1186/s40478-018-0630-1 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J et al (2014) Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5—a population-based study. Lancet Oncol 15:35–47.  https://doi.org/10.1016/S1470-2045(13)70548-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Grajkowska W, Matyja E, Pronicki M, Daszkiewicz P, Roszkowski M, Perek D et al (2009) Papillary ependymoma with unique superficial cortical location: immunohistochemical and ultrastructural studies. A case report. Folia Neuropathol 47:354–361PubMedGoogle Scholar
  13. 13.
    Hovestadt VZM (2017) conumee: Enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1.9.0Google Scholar
  14. 14.
    Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the children’s oncology group randomized ACNS0332 trial. J Clin Oncol.  https://doi.org/10.1200/jco.2017.76.4720 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B et al (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786.  https://doi.org/10.1158/1541-7786.MCR-08-0584 CrossRefPubMedGoogle Scholar
  16. 16.
    Kolde R (2019) pheatmap: Pretty Heatmaps. R package version 1.0.12Google Scholar
  17. 17.
    Kuga Y, Ohnishi H, Kodama Y, Takakura S, Hayashi M, Yagi R et al (2014) Cerebral and spinal cord tanycytic ependymomas in a young adult with a mutation in the NF2 gene. Neuropathology 34:406–413.  https://doi.org/10.1111/neup.12109 CrossRefPubMedGoogle Scholar
  18. 18.
    Louis DN, Ohgaki H, Wiestler OD, Ellison DW, Figarella-Branger D, Perry A et al (2016) WHO classification of tumours of the central nervous system (revised 4th edn). Lyon, IARCGoogle Scholar
  19. 19.
    Min KW, Scheithauer BW (1997) Clear cell ependymoma: a mimic of oligodendroglioma: clinicopathologic and ultrastructural considerations. Am J Surg Pathol 21:820–826CrossRefGoogle Scholar
  20. 20.
    Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK et al (2013) ChAMP: 450 k chip analysis methylation pipeline. Bioinformatics 30:428–430.  https://doi.org/10.1093/bioinformatics/btt684 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    DNAcopy: DNA copy number data analysis (2019)Google Scholar
  22. 22.
    Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136:211–226.  https://doi.org/10.1007/s00401-018-1877-0 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743.  https://doi.org/10.1016/j.ccell.2015.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506:451–455.  https://doi.org/10.1038/nature13109 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Radhakrishnan N, Nair NS, Hingwala DR, Kapilamoorthy TR, Radhakrishnan VV (2012) Tanycytic ependymoma of filum terminale: a case report. Clin Neurol Neurosurg 114:169–171.  https://doi.org/10.1016/j.clineuro.2011.09.017 CrossRefPubMedGoogle Scholar
  26. 26.
    Rickert CH, Korshunov A, Paulus W (2006) Chromosomal imbalances in clear cell ependymomas. Mod Pathol 19:958–962.  https://doi.org/10.1038/modpathol.3800614 CrossRefPubMedGoogle Scholar
  27. 27.
    Sasaki A, Hirato J, Hirose T, Fukuoka K, Kanemura Y, Hashimoto N et al (2019) Review of ependymomas: assessment of consensus in pathological diagnosis and correlations with genetic profiles and outcome. Brain Tumor Pathol 36:92–101.  https://doi.org/10.1007/s10014-019-00338-x CrossRefPubMedGoogle Scholar
  28. 28.
    Stark AM, Hugo HH, Nabavi A, Mehdorn HM (2009) Papillary ependymoma WHO Grade II of the aqueduct treated by endoscopic tumor resection. Case Rep Med 2009:434905.  https://doi.org/10.1155/2009/434905 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DT, Capper D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072.  https://doi.org/10.1016/j.cell.2016.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tao X, Dong J, Hou Z, Hao S, Zhang Q, Wu Z et al (2017) The clinical features and surgical outcomes of intracranial tanycytic ependymomas: a single-institutional experience. J Neurooncol 134:339–347.  https://doi.org/10.1007/s11060-017-2531-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Tao X, Hou Z, Hao S, Zhang Q, Wu Z, Zhang J et al (2017) The clinical features and surgical outcomes of spinal cord tanycytic ependymomas: a report of 40 cases. World Neurosurg 106:60–73.  https://doi.org/10.1016/j.wneu.2017.06.111 CrossRefPubMedGoogle Scholar
  32. 32.
    Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr BA, Billups CA, Bowers DC et al (2019) Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro Oncol.  https://doi.org/10.1093/neuonc/noz069 CrossRefPubMedGoogle Scholar
  33. 33.
    Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Julia E. Neumann
    • 1
    Email author
  • Michael Spohn
    • 2
    • 15
  • Denise Obrecht
    • 3
  • Martin Mynarek
    • 3
  • Christian Thomas
    • 4
  • Martin Hasselblatt
    • 4
  • Mario M. Dorostkar
    • 5
    • 6
  • Annika K. Wefers
    • 7
    • 8
    • 9
  • Stephan Frank
    • 10
  • Camelia-Maria Monoranu
    • 11
  • Arend Koch
    • 12
  • Hendrik Witt
    • 9
    • 13
    • 14
  • Marcel Kool
    • 9
    • 13
  • Kristian W. Pajtler
    • 9
    • 13
    • 14
  • Stefan Rutkowski
    • 3
  • Markus Glatzel
    • 1
  • Ulrich Schüller
    • 1
    • 3
    • 15
    Email author
  1. 1.Institute of NeuropathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.II. Medizinische Klinik und PoliklinikUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Institute of NeuropathologyUniversity Hospital MünsterMünsterGermany
  5. 5.Center for NeuropathologyLudwig-Maximilians-UniversityMunichGermany
  6. 6.German Center for Neurodegenerative DiseasesMunichGermany
  7. 7.Department of Neuropathology, Institute of PathologyUniversity Hospital, Heidelberg and Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
  8. 8.Clinical Cooperation Unit NeuropathologyGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
  9. 9.Hopp Children’s Cancer Center Heidelberg (KiTZ)HeidelbergGermany
  10. 10.Institute of PathologyUniversity of BaselBaselSwitzerland
  11. 11.Department of Neuropathology, Institute of PathologyUniversity of WürzburgWürzburgGermany
  12. 12.Department of NeuropathologyCharité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  13. 13.Division of Pediatric Neuro-OncologyGerman Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
  14. 14.Department of Pediatric Oncology and HematologyUniversity Hospital HeidelbergHeidelbergGermany
  15. 15.Research Institute Children’s Cancer Center HamburgHamburgGermany

Personalised recommendations