Advertisement

Acta Neuropathologica

, Volume 138, Issue 6, pp 1093–1097 | Cite as

C9orf72-specific phenomena associated with frontotemporal dementia and gastrointestinal symptoms in the absence of TDP-43 aggregation

  • Paul J. Sampognaro
  • Sarat C. Vatsavayai
  • Celica G. Cosme
  • Ji-Hye L. Hwang
  • Amber Nolan
  • Eric J. Huang
  • William W. SeeleyEmail author
  • Mary G. De May
Correspondence

The most common genetic cause of frontotemporal dementia is the expanded hexanucleotide (GGGGCC) repeat insertion in a non-coding promoter region of the chromosome 9 open reading frame 72 (C9orf72) gene [4, 13]. Nearly all patients who carry the C9orf72 expansion show well-developed TAR DNA-binding protein 43 (TDP-43) inclusion pathology at autopsy, and TDP-43 has been considered a key driver of neurodegeneration based on human clinicopathological correlation approaches [7]. Scattered case reports describing pre-symptomatic C9orf72 expansion carriers suggest, however, that C9orf72-specific phenomena such as dipeptide repeat (DPR) proteins and RNA foci can be observed in the absence of or even preceding TDP-43 inclusions [11, 15]. One previous report of a patient with behavioral variant FTD (bvFTD) suggested that focal degeneration could occur in brain regions lacking TDP-43 aggregation, but to date no patient with symptomatic C9orf72-associated “probable” FTD has lacked TDP-43...

Notes

Acknowledgements

The authors wish to thank the patient and her family for their invaluable contributions to neurodegeneration research. The authors also wish to thank Dr. Leonard Petrucelli and his group at the Mayo Clinic Florida for contributing dipeptide repeat protein antibodies. This work was supported by NIH grants AG023501 and AG019724, the Tau Consortium, and the Bluefield Project to Cure FTD.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest relevant to this article to disclose.

Supplementary material

401_2019_2084_MOESM1_ESM.docx (13.3 mb)
Supplementary material 1 (DOCX 13643 kb)

References

  1. 1.
    Ahmed RM, Ke YD, Vucic S, Ittner LM, Seeley W, Hodges JR et al (2018) Physiological changes in neurodegeneration-mechanistic insights and clinical utility. Nat Rev Neurol 5:5.  https://doi.org/10.1038/nrneurol.2018.23 CrossRefGoogle Scholar
  2. 2.
    Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL, DeJesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron.  https://doi.org/10.1016/j.neuron.2013.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Davidson Y, Robinson AC, Liu X, Wu D, Troakes C, Rollinson S et al (2016) Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathol Appl Neurobiol.  https://doi.org/10.1111/nan.12292 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron.  https://doi.org/10.1016/j.neuron.2011.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M (2013) Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol.  https://doi.org/10.1111/iep.12006 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Guo Y, Wang Q, Zhang K, An T, Shi P, Li Z et al (2012) HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res.  https://doi.org/10.1016/j.brainres.2012.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    MacKenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol.  https://doi.org/10.1007/s00401-013-1181-y CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol.  https://doi.org/10.1007/s00401-008-0460-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    McGoldrick P, Zhang M, van Blitterswijk M, Sato C, Moreno D, Xiao S et al (2018) Unaffected mosaic C9orf72 case: RNA foci, dipeptide proteins, but upregulated C9orf72 expression. Neurology.  https://doi.org/10.1212/WNL.0000000000004865 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Neumann M, Bentmann E, Dormann D, Jawaid A, Dejesus-Hernandez M, Ansorge O et al (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain.  https://doi.org/10.1093/brain/awr201 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Proudfoot M, Gutowski NJ, Edbauer D, Hilton DA, Stephens M, Rankin J et al (2014) Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability. Acta Neuropathol.  https://doi.org/10.1007/s00401-014-1245-7 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia TT—Empfindlichkeit der revidierten Diagnosekriterien der Verhaltensvariante der frontotemporalen Demenz. Brain.  https://doi.org/10.1093/brain/awr179 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron.  https://doi.org/10.1016/j.neuron.2011.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schludi MH, May S, Grässer FA, Rentzsch K, Kremmer E, Küpper C et al (2015) Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol.  https://doi.org/10.1007/s00401-015-1450-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JNS, Trujillo A et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain.  https://doi.org/10.1093/brain/aww250 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA et al (2013) TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol.  https://doi.org/10.1001/jamaneurol.2013.3961 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of PathologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations