Advertisement

Acta Neuropathologica

, Volume 138, Issue 5, pp 783–793 | Cite as

Increased prevalence of granulovacuolar degeneration in C9orf72 mutation

  • Yuichi Riku
  • Charles DuyckaertsEmail author
  • Susana Boluda
  • Isabelle Plu
  • Isabelle Le Ber
  • Stéphanie Millecamps
  • François Salachas
  • Brainbank NeuroCEB Neuropathology Network
  • Mari Yoshida
  • Takashi Ando
  • Masahisa Katsuno
  • Gen Sobue
  • Danielle Seilhean
Original Paper

Abstract

Granulovacuolar degeneration (GVD) is usually found in Alzheimer’s disease (AD) cases or in elderly individuals. Its severity correlates positively with the density of neurofibrillary tangles (NFTs). Mechanisms underlying GVD formation are unknown. We assessed the prevalence and distribution of GVD in cases with TDP-43-related frontotemporal lobar degeneration (FTLD-TDP) and amyotrophic lateral sclerosis (ALS-TDP). Consecutively autopsied cases with FTLD/ALS-TDP and C9orf72 mutations (FTLD/ALS-C9; N = 29), cases with FTLD/ALS-TDP without C9orf72 mutations (FTLD/ALS-nonC9; N = 46), and age-matched healthy controls (N = 40) were studied. The prevalence of GVD was significantly higher in the FTLD/ALS-C9 cases (26/29 cases) than in the FTLD/ALS-nonC9 cases (15/46 cases; Fisher exact test; p < 2×10−6) or in the control group (12/40 individuals; p < 1×10−6). Average Braak stages and ages of death were not significantly different among the groups. The CA2 sector was most frequently affected in the FTLD/ALS-C9 group, whereas the CA1/subiculum was the most vulnerable area in the other groups. Extension of GVD correlated with the clinical duration of the disease in the FTLD/ALS-C9 cases but not in the FTLD/ALS-nonC9 cases. The GVD-containing neurons frequently had dipeptide repeat (DPR) protein inclusions. GVD granules labeled with antibodies directed against charged multivesicular body protein 2B or casein kinase 1δ were attached to DPR inclusions within GVD. Our results suggest that development of GVD and DPR inclusions is related to common pathogenic mechanisms and that GVD is not only associated with NFTs seen in AD cases or aging individuals.

Keywords

ALS C9orf72 Dipeptide repeat FTLD Granulovacuolar degeneration TDP-43 

Notes

Acknowledgements

This study is supported by Grants for aid from Uehara Memorial Foundation, Kanae Foundation for the Promotion of Medical Science, and Mochida Memorial Foundation for Medical and Pharmacological Research. The NeuroCEB Brainbank is funded by the patient associations ARSEP (multiple sclerosis), CSC (Connaître les Syndromes Cérébelleux), France Alzheimer, France Parkinson, ARSLA (Association pour la recherche sur la SLA), France DFT (Dégénérescence Fronto-Temporale), and CADASIL France. We also give special thanks to the technicians of the Department of Neuropathology, Pitié-Salpêtrière Hospital. Members of the NeuroCEB Brainbank Neuropathology Network: Letournel F, Martin-Négrier M-L, Chapon F, Godfraind C, Maurage C-A, Deramecourt V, Meyronet D, Streichenberger N, Maues de Paula A, Rigau V, Vandenbos-Burel F, Milin S, Chiforeanu DC, Laquerrière A, and Lannes B.

Author contributions

Study concept: YR, DS, and CD; pathologic data acquisition: YR and DS; clinical data acquisition: FS, IL; genetic tests: SM, IL; autopsy, and tissue archive: SB, IP, DS, and CD; technical instructions: MY, GS, TA, and MK; drafting manuscript: YR; supervisor: DS and CD.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Al-Sarraj S, King A, Troakes C, Smith B, Maekawa S, Bodi I et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702CrossRefGoogle Scholar
  2. 2.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404CrossRefGoogle Scholar
  3. 3.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969CrossRefGoogle Scholar
  4. 4.
    Brat DJ, Gearing M, Goldthwaite PT, Wainer BH, Burger PC (2001) Tau-associated neuropathology in ganglion cell tumours increases with patient age but appears unrelated to ApoE genotype. Neuropathol Appl Neurobiol 27:197–205CrossRefGoogle Scholar
  5. 5.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299CrossRefGoogle Scholar
  6. 6.
    Castellani RJ, Gupta Y, Sheng B, Siedlak SL, Harris PL, Coller JM et al (2011) A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: parallels to stress granules. Lab Invest 91:1777–1786CrossRefGoogle Scholar
  7. 7.
    Davidson Y, Robinson AC, Liu X, Wu D, Troakes C, Rollinson S et al (2016) Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP-43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathol Appl Neurobiol 42:242–254CrossRefGoogle Scholar
  8. 8.
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256CrossRefGoogle Scholar
  9. 9.
    Funk KE, Mrak RE, Kuret J (2011) Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol 37:295–306CrossRefGoogle Scholar
  10. 10.
    Geser F, Martinez-Lage M, Robinson J, Uryu K, Neumann M, Brandmeir NJ et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189CrossRefGoogle Scholar
  11. 11.
    Hunter S, Minett T, Polvikoski T, Mukaetova-Ladinska E, Brayne C, Cambridge City over-75s Cohort Collaboration (2015) Re-examining tau-immunoreactive pathology in the population: granulovacuolar degeneration and neurofibrillary tangles. Alzheimers Res Ther 7:57CrossRefGoogle Scholar
  12. 12.
    Ince PG, Lowe J, Shaw PJ (1998) Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. Neuropathol Appl Neurobiol 24:104–117CrossRefGoogle Scholar
  13. 13.
    Kadokura A, Yamazaki T, Kakuda S, Makioka K, Lemere CA, Fujita Y et al (2009) Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 463:87–92CrossRefGoogle Scholar
  14. 14.
    Köhler C (2016) Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol 132:339–359CrossRefGoogle Scholar
  15. 15.
    Mackenzie IR, Frick P, Grässer FA, Gendron TF, Petrucelli L, Cashman NR (2015) Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72mutation carriers. Acta Neuropathol 130:845–861CrossRefGoogle Scholar
  16. 16.
    Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113CrossRefGoogle Scholar
  17. 17.
    May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM et al (2014) C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503CrossRefGoogle Scholar
  18. 18.
    McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100CrossRefGoogle Scholar
  19. 19.
    Millecamps S, Boillee S, Le Ber I, Seilhean D, Teyssou E, Giraudeau M et al (2012) Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet 49:258–263CrossRefGoogle Scholar
  20. 20.
    Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338CrossRefGoogle Scholar
  21. 21.
    Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690CrossRefGoogle Scholar
  22. 22.
    Neary D, SnowdenJS Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefGoogle Scholar
  23. 23.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133CrossRefGoogle Scholar
  24. 24.
    Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AY, Spliet WG et al (2015) Expression of neurodegenerative disease-related proteins and caspase-3 in glioneuronal tumours. Neuropathol Appl Neurobiol 41:e1–e15CrossRefGoogle Scholar
  25. 25.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452CrossRefGoogle Scholar
  26. 26.
    Riku Y, Watanabe H, Yoshida M, Mimuro M, Iwasaki Y, Masuda M et al (2017) Pathologic involvement of glutamatergic striatal inputs from the cortices in TAR DNA-binding protein 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 76:759–768CrossRefGoogle Scholar
  27. 27.
    Riku Y, Watanabe H, Yoshida M, Mimuro M, Iwasaki Y, Masuda M et al (2016) Marked involvement of the striatal efferent system in TAR DNA-binding protein 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 75:801–811CrossRefGoogle Scholar
  28. 28.
    Riku Y, Watanabe H, Yoshida M, Tatsumi S, Mimuro M, Iwasaki Y et al (2014) Lower motor neuron involvement in TAR DNA-binding protein of 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. JAMA Neurol 71:172–179CrossRefGoogle Scholar
  29. 29.
    Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y et al (2004) Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 63:911–918CrossRefGoogle Scholar
  30. 30.
    Seilhean D, Le Ber I, Sarazin M, Lacomblez L, Millecamps S, Salachas F et al (2011) Fronto-temporal lobar degeneration: neuropathology in 60 cases. J Neural Transm (Vienna) 118:753–764CrossRefGoogle Scholar
  31. 31.
    Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST et al (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24:313–325CrossRefGoogle Scholar
  32. 32.
    Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB et al (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR32 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:51CrossRefGoogle Scholar
  33. 33.
    Swinnen B, Bento-Abreu A, Gendron TF, Boeynaems S, Bogaert E, Nuyts R et al (2018) A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathol 135:427–443CrossRefGoogle Scholar
  34. 34.
    Takeda T, Seilhean D, Le Ber I, Millecamps S, Sazdovitch V, Kitagawa K et al (2017) Amygdala TDP-43 pathology in frontotemporal lobar degeneration and motor neuron disease. J Neuropathol Exp Neurol 76:800–812CrossRefGoogle Scholar
  35. 35.
    Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H et al (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589CrossRefGoogle Scholar
  36. 36.
    Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800CrossRefGoogle Scholar
  37. 37.
    Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN, Trujillo A et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 39:3202–3216CrossRefGoogle Scholar
  38. 38.
    Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, Hiji M et al (2011) Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PLoS One 6:e26996CrossRefGoogle Scholar
  39. 39.
    Yamazaki Y, Takahashi T, Hiji M, Kurashige T, Izumi Y, Yamawaki T et al (2010) Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci Lett 477:86–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuichi Riku
    • 1
    • 6
  • Charles Duyckaerts
    • 1
    • 2
    • 3
    Email author
  • Susana Boluda
    • 1
    • 3
  • Isabelle Plu
    • 1
    • 2
  • Isabelle Le Ber
    • 3
    • 4
  • Stéphanie Millecamps
    • 3
  • François Salachas
    • 5
  • Brainbank NeuroCEB Neuropathology Network
  • Mari Yoshida
    • 7
  • Takashi Ando
    • 6
  • Masahisa Katsuno
    • 6
  • Gen Sobue
    • 8
  • Danielle Seilhean
    • 1
    • 2
    • 3
  1. 1.Raymond Escourolle Neuropathology DepartmentGroupe Hospitalier Pitié-Salpêtrière Charles Foix, AP-HPParisFrance
  2. 2.Faculty of MedicineSorbonne UniversityParisFrance
  3. 3.Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR7225, Sorbonne UniversityParisFrance
  4. 4.National Reference Center for Rare or Early Dementias, Institute of Memory and Alzheimer’s Disease (IM2A), Center of Excellence of Neurodegenerative Disease (CoEN), Department of NeurologyGroupe Hospitalier Pitié-Salpêtrière Charles Foix AP-HPParisFrance
  5. 5.Reference Center for ALS, Department of NeurologyGroupe Hospitalier Pitié-Salpêtrière Charles Foix, AP-HPParisFrance
  6. 6.Department of NeurologyNagoya UniversityNagoyaJapan
  7. 7.Institute for Medical Science of AgingAichi Medical UniversityAichiJapan
  8. 8.Graduate School of MedicineNagoya UniversityNagoyaJapan

Personalised recommendations