Advertisement

An update on the central nervous system manifestations of tuberous sclerosis complex

  • Jennifer A. CotterEmail author
Review

Abstract

The autosomal dominant disorder tuberous sclerosis complex (TSC) is characterized by an array of manifestations both within and outside of the central nervous system (CNS), including hamartomas and other malformations. TSC is caused by mutations in the TSC1 or TSC2 gene resulting in activation of the mechanistic target of rapamycin (mTOR) signaling pathway. Study of TSC has shed light on the critical role of the mTOR pathway in neurodevelopment. This update reviews the genetic basis of TSC, its cardinal phenotypic CNS features, and recent developments in the field of TSC and other mTOR-altered disorders.

Keywords

Tuberous sclerosis TSC1 TSC2 Hamartin Tuberin mTOR Tuber Subependymal nodule Subependymal giant cell astrocytoma (SEGA) Focal cortical dysplasia 

Notes

Acknowledgements

The author would like to thank Dr. Jaclyn Biegel, Dr. Jianling Ji, Dr. Tena Rosser, and Dr. Benita Tamrazi for their helpful comments on the manuscript.

References

  1. 1.
    Arseni C, Alexianu M, Horvat L, Alexianu D, Petrovici A (1972) Fine structure of atypical cells in tuberous sclerosis. Acta Neuropathol 21:185–193CrossRefGoogle Scholar
  2. 2.
    Au KS, Williams AT, Roach ES, Batchelor L, Sparagana SP, Delgado MR et al (2007) Genotype/phenotype correlation in 325 individuals referred for a diagnosis of tuberous sclerosis complex in the United States. Genet Med 9:88–100.  https://doi.org/10.1097/GIM.0b013e31803068c7 CrossRefGoogle Scholar
  3. 3.
    Barrows BD, Rutkowski MJ, Gultekin SH, Parsa AT, Tihan T (2012) Evidence of ambiguous differentiation and mTOR pathway dysregulation in subependymal giant cell astrocytoma. Turk Patoloji Derg 28:95–103.  https://doi.org/10.5146/tjpath.2012.01107 Google Scholar
  4. 4.
    Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL (2013) Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78:510–522.  https://doi.org/10.1016/j.neuron.2013.03.017 CrossRefGoogle Scholar
  5. 5.
    Blair JD, Hockemeyer D, Bateup HS (2018) Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat Med 24:1568–1578.  https://doi.org/10.1038/s41591-018-0139-y CrossRefGoogle Scholar
  6. 6.
    Bongaarts A, Giannikou K, Reinten RJ, Anink JJ, Mills JD, Jansen FE et al (2017) Subependymal giant cell astrocytomas in tuberous sclerosis complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8:95516–95529.  https://doi.org/10.18632/oncotarget.20764 CrossRefGoogle Scholar
  7. 7.
    Boronat S, Barber I (2018) Less common manifestations in TSC. Am J Med Genet Part C Semin Med Genet 178:348–354.  https://doi.org/10.1002/ajmg.c.31648 CrossRefGoogle Scholar
  8. 8.
    Bourneville D (1880) Contribution à l’étude de l’idiotie. Arch Neurol (Paris) 1:69–91Google Scholar
  9. 9.
    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474.  https://doi.org/10.1038/nature26000 CrossRefGoogle Scholar
  10. 10.
    Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J et al (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242CrossRefGoogle Scholar
  11. 11.
    Crino PB, Trojanowski JQ, Dichter MA, Eberwine J (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc Natl Acad Sci USA 93:14152–14157CrossRefGoogle Scholar
  12. 12.
    Cuddapah VA, Thompson M, Blount J, Li R, Guleria S, Goyal M (2015) Hemispherectomy for hemimegalencephaly due to tuberous sclerosis and a review of the literature. Pediatr Neurol 53:452–455.  https://doi.org/10.1016/j.pediatrneurol.2015.06.020 CrossRefGoogle Scholar
  13. 13.
    Curatolo P, Franz DN, Lawson JA, Yapici Z, Ikeda H, Polster T et al (2018) Adjunctive everolimus for children and adolescents with treatment-refractory seizures associated with tuberous sclerosis complex: post hoc analysis of the phase 3 EXIST-3 trial. Lancet Child Adolesc Health 2:495–504.  https://doi.org/10.1016/s2352-4642(18)30099-3 CrossRefGoogle Scholar
  14. 14.
    D’Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM et al (2015) Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol 77:720–725.  https://doi.org/10.1002/ana.24357 CrossRefGoogle Scholar
  15. 15.
    D’Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere CM et al (2017) Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep 21:3754–3766.  https://doi.org/10.1016/j.celrep.2017.11.106 CrossRefGoogle Scholar
  16. 16.
    Davis RL, Nelson E (1961) Unilateral ganglioglioma in a tuberosclerotic brain. J Neuropathol Exp Neurol 20:571–581CrossRefGoogle Scholar
  17. 17.
    de Leon GA, Zaeri N, Foley CM (1988) Olfactory hamartomas in tuberous sclerosis. J Neurol Sci 87:187–194CrossRefGoogle Scholar
  18. 18.
    de Vries PJ, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P et al (2018) TSC-associated neuropsychiatric disorders (TAND): findings from the TOSCA natural history study. Orphanet J Rare Dis 13:157.  https://doi.org/10.1186/s13023-018-0901-8 CrossRefGoogle Scholar
  19. 19.
    Dibble CC, Manning BD (2010) The TSC1–TSC2 complex: a key signal-integrating node upstream of TOR. Enzymes 28:21–48CrossRefGoogle Scholar
  20. 20.
    Dragoumi P, O’Callaghan F, Zafeiriou DI (2018) Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol.  https://doi.org/10.1016/j.ejpn.2018.08.005 Google Scholar
  21. 21.
    European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315CrossRefGoogle Scholar
  22. 22.
    Feldman ME, Shokat KM (2010) New inhibitors of the PI3K–Akt–mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs). Curr Top Microbiol Immunol 347:241–262.  https://doi.org/10.1007/82_2010_64 Google Scholar
  23. 23.
    Ferrer I, Fabregues I, Coll J, Ribalta T, Rives A (1984) Tuberous sclerosis: a Golgi study of cortical tuber. Clin Neuropathol 3:47–51Google Scholar
  24. 24.
    Franz DN, Belousova E, Sparagana S, Bebin EM, Frost MD, Kuperman R et al (2016) Long-term use of everolimus in patients with tuberous sclerosis complex: final results from the EXIST-1 study. PLoS One 11:e0158476.  https://doi.org/10.1371/journal.pone.0158476 CrossRefGoogle Scholar
  25. 25.
    Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G et al (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498.  https://doi.org/10.1002/ana.20784 CrossRefGoogle Scholar
  26. 26.
    French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–2163.  https://doi.org/10.1016/S0140-6736(16)31419-2 CrossRefGoogle Scholar
  27. 27.
    Gao X, Pan D (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15:1383–1392.  https://doi.org/10.1101/gad.901101 CrossRefGoogle Scholar
  28. 28.
    Gedikbasi A, Oztarhan K, Ulker V, Aslan G, Gul A, Sener-Arslan E et al (2011) Prenatal sonographic diagnosis of tuberous sclerosis complex. J Clin Ultrasound 39:427–430.  https://doi.org/10.1002/jcu.20857 CrossRefGoogle Scholar
  29. 29.
    Gilboa T, Segel R, Zeligson S, Alterescu G, Ben-Pazi H (2018) Ganglioglioma, epilepsy, and intellectual impairment due to familial TSC1 deletion. J Child Neurol 33:482–486.  https://doi.org/10.1177/0883073818767036 CrossRefGoogle Scholar
  30. 30.
    Gusman M, Servaes S, Feygin T, Degenhardt K, Epelman M (2012) Multimodal imaging in the prenatal diagnosis of tuberous sclerosis complex. Case Rep Pediatr 2012:925646.  https://doi.org/10.1155/2012/925646 Google Scholar
  31. 31.
    Henske EP, Scheithauer BW, Short MP, Wollmann R, Nahmias J, Hornigold N et al (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59:400–406Google Scholar
  32. 32.
    Itoua B, Joubert E, Le Bras Y, Picot F, Gautier F, Wertel F et al (1999) What is it? Bourneville tuberous sclerosis associated with an arteriovenous malformation, a pituitary adenoma and 2 arachnoid cysts. J Radiol 80:395–396Google Scholar
  33. 33.
    Jozwiak S, Kotulska K, Berkowitz N, Brechenmacher T, Franz DN (2016) Safety of everolimus in patients younger than 3 years of age: results from EXIST-1, a randomized, controlled clinical trial. J Pediatr 172(151–155):e151.  https://doi.org/10.1016/j.jpeds.2016.01.027 CrossRefGoogle Scholar
  34. 34.
    Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J (2012) Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr 9:406–413.  https://doi.org/10.3171/2011.12.PEDS11418 CrossRefGoogle Scholar
  35. 35.
    Kenerson H, Dundon TA, Yeung RS (2005) Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 57:67–75.  https://doi.org/10.1203/01.PDR.0000147727.78571.07 CrossRefGoogle Scholar
  36. 36.
    Krueger DA, Capal JK, Curatolo P, Devinsky O, Ess K, Tzadok M et al (2018) Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): multicentre clinical experience. Eur J Paediatr Neurol.  https://doi.org/10.1016/j.ejpn.2018.06.007 Google Scholar
  37. 37.
    Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811.  https://doi.org/10.1056/NEJMoa1001671 CrossRefGoogle Scholar
  38. 38.
    Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49:255–265.  https://doi.org/10.1016/j.pediatrneurol.2013.08.002 CrossRefGoogle Scholar
  39. 39.
    Lee D, Cho YH, Kang SY, Yoon N, Sung CO, Suh YL (2015) BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and subependymal giant cell astrocytomas. J Surg Oncol 111:359–364.  https://doi.org/10.1002/jso.23822 CrossRefGoogle Scholar
  40. 40.
    Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A et al (2004) Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosom Cancer 41:80–85.  https://doi.org/10.1002/gcc.20052 CrossRefGoogle Scholar
  41. 41.
    Li Y, Barkovich MJ, Karch CM, Nillo RM, Fan CC, Broce IJ et al (2018) Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex. Sci Rep 8:13373.  https://doi.org/10.1038/s41598-018-31075-4 CrossRefGoogle Scholar
  42. 42.
    Liu J, Reeves C, Michalak Z, Coppola A, Diehl B, Sisodiya SM et al (2014) Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2:71.  https://doi.org/10.1186/2051-5960-2-71 CrossRefGoogle Scholar
  43. 43.
    Liu W, Yu WM, Zhang J, Chan RJ, Loh ML, Zhang Z et al (2017) Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia 31:1415–1422.  https://doi.org/10.1038/leu.2016.326 CrossRefGoogle Scholar
  44. 44.
    Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol 91:368–375CrossRefGoogle Scholar
  45. 45.
    Magri L, Cominelli M, Cambiaghi M, Cursi M, Leocani L, Minicucci F et al (2013) Timing of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models. Dis Model Mech 6:1185–1197.  https://doi.org/10.1242/dmm.012096 CrossRefGoogle Scholar
  46. 46.
    Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-Reed KE et al (2017) The genomic landscape of tuberous sclerosis complex. Nat Commun 8:15816.  https://doi.org/10.1038/ncomms15816 CrossRefGoogle Scholar
  47. 47.
    McMaster ML, Goldstein AM, Parry DM (2011) Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 48:444–449.  https://doi.org/10.1136/jmg.2010.085092 CrossRefGoogle Scholar
  48. 48.
    Moon UY, Park JY, Park R, Cho JY, Hughes LJ, McKenna J 3rd et al (2015) Impaired Reelin-Dab1 signaling contributes to neuronal migration deficits of tuberous sclerosis complex. Cell Rep 12:965–978.  https://doi.org/10.1016/j.celrep.2015.07.013 CrossRefGoogle Scholar
  49. 49.
    Nardelli E, De Benedictis G, La Stilla G, Nicolardi G (1986) Tuberous sclerosis: a neuropathological and immunohistochemical (PAP) study. Clin Neuropathol 5:261–266Google Scholar
  50. 50.
    Normand EA, Crandall SR, Thorn CA, Murphy EM, Voelcker B, Browning C et al (2013) Temporal and mosaic Tsc1 deletion in the developing thalamus disrupts thalamocortical circuitry, neural function, and behavior. Neuron 78:895–909.  https://doi.org/10.1016/j.neuron.2013.03.030 CrossRefGoogle Scholar
  51. 51.
    Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49:243–254.  https://doi.org/10.1016/j.pediatrneurol.2013.08.001 CrossRefGoogle Scholar
  52. 52.
    O’Callaghan FJ, Shiell AW, Osborne JP, Martyn CN (1998) Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet 351:1490.  https://doi.org/10.1016/S0140-6736(05)78872-3 CrossRefGoogle Scholar
  53. 53.
    O’Rahilly R, Müller F (1994) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, HobokenGoogle Scholar
  54. 54.
    Ouyang T, Zhang N, Benjamin T, Wang L, Jiao J, Zhao Y et al (2014) Subependymal giant cell astrocytoma: current concepts, management, and future directions. Childs Nerv Syst 30:561–570.  https://doi.org/10.1007/s00381-014-2383-x CrossRefGoogle Scholar
  55. 55.
    Overwater IE, Swenker R, van der Ende EL, Hanemaayer KB, Hoogeveen-Westerveld M, van Eeghen AM et al (2016) Genotype and brain pathology phenotype in children with tuberous sclerosis complex. Eur J Hum Genet 24:1688–1695.  https://doi.org/10.1038/ejhg.2016.85 CrossRefGoogle Scholar
  56. 56.
    Peron A, Au KS, Northrup H (2018) Genetics, genomics, and genotype-phenotype correlations of TSC: insights for clinical practice. Am J Med Genet Part C Semin Med Genet 178:281–290.  https://doi.org/10.1002/ajmg.c.31651 CrossRefGoogle Scholar
  57. 57.
    Prabowo AS, Anink JJ, Lammens M, Nellist M, van den Ouweland AM, Adle-Biassette H et al (2013) Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 23:45–59.  https://doi.org/10.1111/j.1750-3639.2012.00616.x CrossRefGoogle Scholar
  58. 58.
    Ramesh V (2003) Aspects of tuberous sclerosis complex (TSC) protein function in the brain. Biochem Soc Trans 31:579–583.  https://doi.org/10.1042/bst0310579 CrossRefGoogle Scholar
  59. 59.
    Roach ES (2016) Applying the lessons of tuberous sclerosis: the 2015 Hower Award Lecture. Pediatr Neurol 63:6–22.  https://doi.org/10.1016/j.pediatrneurol.2016.07.003 CrossRefGoogle Scholar
  60. 60.
    Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A et al (2016) Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534:272–276.  https://doi.org/10.1038/nature17963 CrossRefGoogle Scholar
  61. 61.
    Rosser T (2018) Neurocutaneous disorders. Continuum (Minneap Minn) 24:96–129.  https://doi.org/10.1212/CON.0000000000000562 Google Scholar
  62. 62.
    Roth J, Roach ES, Bartels U, Jozwiak S, Koenig MK, Weiner HL et al (2013) Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol 49:439–444.  https://doi.org/10.1016/j.pediatrneurol.2013.08.017 CrossRefGoogle Scholar
  63. 63.
    Samueli S, Dressler A, Groppel G, Scholl T, Feucht M (2018) Everolimus in infants with tuberous sclerosis complex-related West syndrome: first results from a single-center prospective observational study. Epilepsia 59:e142–e146.  https://doi.org/10.1111/epi.14529 CrossRefGoogle Scholar
  64. 64.
    Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 13:731–741.  https://doi.org/10.1038/sj.ejhg.5201402 CrossRefGoogle Scholar
  65. 65.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405.  https://doi.org/10.1007/s00401-011-0802-6 CrossRefGoogle Scholar
  66. 66.
    Schramm C, Fine DM, Edwards MA, Reeb AN, Krenz M (2012) The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol 302:H231–H243.  https://doi.org/10.1152/ajpheart.00665.2011 CrossRefGoogle Scholar
  67. 67.
    Schubert-Bast S, Rosenow F, Klein KM, Reif PS, Kieslich M, Strzelczyk A (2018) The role of mTOR inhibitors in preventing epileptogenesis in patients with TSC: current evidence and future perspectives. Epilepsy Behav.  https://doi.org/10.1016/j.yebeh.2018.05.039 Google Scholar
  68. 68.
    Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153.  https://doi.org/10.1016/j.neuroscience.2016.11.017 CrossRefGoogle Scholar
  69. 69.
    Tatli M, Guzel A (2007) Bilateral temporal arachnoid cysts associated with tuberous sclerosis complex. J Child Neurol 22:775–779.  https://doi.org/10.1177/0883073807304014 CrossRefGoogle Scholar
  70. 70.
    Toldo I, Brasson V, Miscioscia M, Pelizza MF, Manara R, Sartori S et al (2018) Tuberous sclerosis-associated neuropsychiatric disorders: a paediatric cohort study. Dev Med Child Neurol.  https://doi.org/10.1111/dmcn.14055 Google Scholar
  71. 71.
    Trombley IK, Mirra SS (1981) Ultrastructure of tuberous sclerosis: cortical tuber and subependymal tumor. Ann Neurol 9:174–181.  https://doi.org/10.1002/ana.410090211 CrossRefGoogle Scholar
  72. 72.
    Tsai V, Parker WE, Orlova KA, Baybis M, Chi AW, Berg BD et al (2014) Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex 24:315–327.  https://doi.org/10.1093/cercor/bhs310 CrossRefGoogle Scholar
  73. 73.
    van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808CrossRefGoogle Scholar
  74. 74.
    Vinters HV, Park SH, Johnson MW, Mischel PS, Catania M, Kerfoot C (1999) Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci 21:248–259.  https://doi.org/10.1159/000017404 CrossRefGoogle Scholar
  75. 75.
    von Recklinghausen F (1862) Ein Herz von einem Neugebore- nen, welches mehrere teils nach aussen, teils nach den Höhlen prominierende Tumoren (Myomen) trug. Verh Ges Geburtsh Monatschr Geburtsk 20:1–2Google Scholar
  76. 76.
    Wataya-Kaneda M (2015) Mammalian target of rapamycin and tuberous sclerosis complex. J Dermatol Sci 79:93–100.  https://doi.org/10.1016/j.jdermsci.2015.04.005 CrossRefGoogle Scholar
  77. 77.
    Yasin SA, Latak K, Becherini F, Ganapathi A, Miller K, Campos O et al (2010) Balloon cells in human cortical dysplasia and tuberous sclerosis: isolation of a pathological progenitor-like cell. Acta Neuropathol 120:85–96.  https://doi.org/10.1007/s00401-010-0677-y CrossRefGoogle Scholar
  78. 78.
    Yates JR, Maclean C, Higgins JN, Humphrey A, le Marechal K, Clifford M et al (2011) The Tuberous Sclerosis 2000 Study: presentation, initial assessments and implications for diagnosis and management. Arch Dis Child 96:1020–1025.  https://doi.org/10.1136/adc.2011.211995 CrossRefGoogle Scholar
  79. 79.
    Yeung RS, Katsetos CD, Klein-Szanto A (1997) Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol 151:1477–1486Google Scholar
  80. 80.
    Zhou J, Shrikhande G, Xu J, McKay RM, Burns DK, Johnson JE et al (2011) Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev 25:1595–1600.  https://doi.org/10.1101/gad.16750211 CrossRefGoogle Scholar
  81. 81.
    Zordan P, Cominelli M, Cascino F, Tratta E, Poliani PL, Galli R (2018) Tuberous sclerosis complex-associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt. J Clin Investig 128:1688–1706.  https://doi.org/10.1172/jci96342 CrossRefGoogle Scholar
  82. 82.
    Zou J, Zhang B, Gutmann DH, Wong M (2017) Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia 58:2053–2063.  https://doi.org/10.1111/epi.13923 CrossRefGoogle Scholar
  83. 83.
    Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D’Arcangelo G (2018) Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci 92:149–163.  https://doi.org/10.1016/j.mcn.2018.08.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineChildren’s Hospital Los AngelesLos AngelesUSA

Personalised recommendations