Advertisement

Acta Neuropathologica

, Volume 137, Issue 2, pp 239–257 | Cite as

The metalloprotease ADAMTS4 generates N-truncated Aβ4–x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease

  • Susanne Walter
  • Thorsten Jumpertz
  • Melanie Hüttenrauch
  • Isabella Ogorek
  • Hermeto Gerber
  • Steffen E. Storck
  • Silvia Zampar
  • Mitko Dimitrov
  • Sandra Lehmann
  • Klaudia Lepka
  • Carsten Berndt
  • Jens Wiltfang
  • Christoph Becker-Pauly
  • Dirk Beher
  • Claus U. Pietrzik
  • Patrick C. Fraering
  • Oliver WirthsEmail author
  • Sascha WeggenEmail author
Original Paper

Abstract

Brain accumulation and aggregation of amyloid-β (Aβ) peptides is a critical step in the pathogenesis of Alzheimer’s disease (AD). Full-length Aβ peptides (mainly Aβ1–40 and Aβ1–42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aβ peptides are truncated at the N-terminus, with Aβ4–x peptides being particularly abundant. Aβ4–x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aβ peptide sequence, which facilitates Aβ4–x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aβ4–40 but unchanged levels of Aβ1–x peptides. In the 5xFAD mouse model of amyloidosis, Aβ4–x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4−/− knockout background, Aβ4–40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aβ species, but Aβ4–40 peptides were absent in cultures derived from ADAMTS4−/− mice indicating that the enzyme was essential for Aβ4–x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aβ4–x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aβ peptides.

Keywords

Neurodegeneration Alzheimer’s disease Amyloidosis Aβ peptides N-truncation ADAMTS proteases Oligodendrocytes 

Notes

Acknowledgements

We thank Karlheinz Baumann and Manfred Brockhaus (F. Hoffmann-La Roche Ltd., Basel, Switzerland) for carboxyl terminus-specific Aβ antibodies, and Guido Reifenberger (Heinrich-Heine-University Duesseldorf, Germany) for encouragement and support.

Author contributions

SW, TJ, DB, OW and SW designed the study. SW, TJ, MH, HG, MD, IO, SL, KL, SZ, SES, and OW designed and performed experiments. SW, TJ, MH, HG., MD, IO, SL, CB, JW, CB-P, CUP, PCF, OW and SW analyzed data, discussed results and provided scientific input throughout the study. SW, OW and SW wrote the paper with input and approval from all authors.

Funding

This work was supported by grants from the Stiftung VERUM (to S.W.) and the Forschungskommission of the Medical Faculty of the Heinrich-Heine-University Duesseldorf (grant 9772513 to T.J. and S.W.), the Alzheimer Forschung Initiative (grant 16013 to O.W.), and the foundations Strauss, Eclosion and SFNTF (to H.G. and P.C.F.).

Compliance with ethical standards

Conflict of interest

D.B. is the Chief Executive Officer of Asceneuron SA. All other authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were carried out in accordance with German guidelines for animal care and have been approved by the local responsible committee.

Supplementary material

401_2018_1929_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1522 kb)

References

  1. 1.
    Association Alzheimer’s (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–509CrossRefGoogle Scholar
  2. 2.
    Antonios G, Saiepour N, Bouter Y, Richard BC, Paetau A, Verkkoniemi-Ahola A et al (2013) N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun 1:56.  https://doi.org/10.1186/2051-5960-1-56 CrossRefGoogle Scholar
  3. 3.
    Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497.  https://doi.org/10.1074/jbc.R109.052340 CrossRefGoogle Scholar
  4. 4.
    Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM et al (2011) Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res Ther 2:35.  https://doi.org/10.1186/alzrt59 Google Scholar
  5. 5.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927CrossRefGoogle Scholar
  6. 6.
    Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127:787–801.  https://doi.org/10.1007/s00401-014-1287-x CrossRefGoogle Scholar
  7. 7.
    Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S et al (2013) N-truncated amyloid beta (Abeta) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 126:189–205.  https://doi.org/10.1007/s00401-013-1129-2 CrossRefGoogle Scholar
  8. 8.
    Brockhaus M, Grunberg J, Rohrig S, Loetscher H, Wittenburg N, Baumeister R et al (1998) Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. NeuroReport 9:1481–1486CrossRefGoogle Scholar
  9. 9.
    Bros P, Delatour V, Vialaret J, Lalere B, Barthelemy N, Gabelle A et al (2015) Quantitative detection of amyloid-beta peptides by mass spectrometry: state of the art and clinical applications. Clin Chem Lab Med 53:1483–1493.  https://doi.org/10.1515/cclm-2014-1048 CrossRefGoogle Scholar
  10. 10.
    Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 19:253–262.  https://doi.org/10.1002/ana.410190306 CrossRefGoogle Scholar
  11. 11.
    Cabrera E, Mathews P, Mezhericher E, Beach TG, Deng J, Neubert TA et al (2018) Abeta truncated species: implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta 1864:208–225.  https://doi.org/10.1016/j.bbadis.2017.07.005 CrossRefGoogle Scholar
  12. 12.
    Collins-Praino LE, Francis YI, Griffith EY, Wiegman AF, Urbach J, Lawton A et al (2014) Soluble amyloid beta levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque severity. Acta Neuropathol Commun 2:83.  https://doi.org/10.1186/s40478-014-0083-010.1186/preaccept-3091772881321882 Google Scholar
  13. 13.
    De Strooper B, Karran E (2016) The Cellular Phase of Alzheimer’s Disease. Cell 164:603–615.  https://doi.org/10.1016/j.cell.2015.12.056 CrossRefGoogle Scholar
  14. 14.
    De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107.  https://doi.org/10.1038/nrneurol.2009.218 CrossRefGoogle Scholar
  15. 15.
    DeBoer SR, Dolios G, Wang R, Sisodia SS (2014) Differential release of beta-amyloid from dendrite- versus axon-targeted APP. J Neurosci 34:12313–12327.  https://doi.org/10.1523/jneurosci.2255-14.2014 CrossRefGoogle Scholar
  16. 16.
    Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ (2010) Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am J Pathol 177:1422–1435.  https://doi.org/10.2353/ajpath.2010.100087 CrossRefGoogle Scholar
  17. 17.
    Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ (2009) Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57:54–65.  https://doi.org/10.1002/glia.20734 CrossRefGoogle Scholar
  18. 18.
    Dimitrov M, Alattia JR, Lemmin T, Lehal R, Fligier A, Houacine J et al (2013) Alzheimer’s disease mutations in APP but not gamma-secretase modulators affect epsilon-cleavage-dependent AICD production. Nat Commun 4:2246.  https://doi.org/10.1038/ncomms3246 CrossRefGoogle Scholar
  19. 19.
    Dubey D, McRae PA, Rankin-Gee EK, Baranov E, Wandrey L, Rogers S et al (2017) Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res 132:50–58.  https://doi.org/10.1016/j.eplepsyres.2017.02.021 CrossRefGoogle Scholar
  20. 20.
    Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471Google Scholar
  21. 21.
    Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC (2017) Zinc and Copper Differentially Modulate Amyloid Precursor Protein Processing by gamma-Secretase and Amyloid-beta Peptide Production. J Biol Chem 292:3751–3767.  https://doi.org/10.1074/jbc.M116.754101 CrossRefGoogle Scholar
  22. 22.
    Gottschall PE, Howell MD (2015) ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol 44–46:70–76.  https://doi.org/10.1016/j.matbio.2015.01.014 CrossRefGoogle Scholar
  23. 23.
    Haddock G, Cross AK, Plumb J, Surr J, Buttle DJ, Bunning RA et al (2006) Expression of ADAMTS-1, -4, -5 and TIMP-3 in normal and multiple sclerosis CNS white matter. Mult Scler 12:386–396CrossRefGoogle Scholar
  24. 24.
    Hahn S, Bruning T, Ness J, Czirr E, Baches S, Gijsen H et al (2011) Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer’s disease attenuate the response of cultured cells to gamma-secretase modulators regardless of their potency and structure. J Neurochem 116:385–395.  https://doi.org/10.1111/j.1471-4159.2010.07118.x CrossRefGoogle Scholar
  25. 25.
    Harms MP, Kotyk JJ, Merchant KM (2006) Evaluation of white matter integrity in ex vivo brains of amyloid plaque-bearing APPsw transgenic mice using magnetic resonance diffusion tensor imaging. Exp Neurol 199:408–415.  https://doi.org/10.1016/j.expneurol.2006.01.002 CrossRefGoogle Scholar
  26. 26.
    Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5:225–231CrossRefGoogle Scholar
  27. 27.
    Hills R, Mazzarella R, Fok K, Liu M, Nemirovskiy O, Leone J et al (2007) Identification of an ADAMTS-4 cleavage motif using phage display leads to the development of fluorogenic peptide substrates and reveals matrilin-3 as a novel substrate. J Biol Chem 282:11101–11109.  https://doi.org/10.1074/jbc.M611588200 CrossRefGoogle Scholar
  28. 28.
    Howell S, Nalbantoglu J, Crine P (1995) Neutral endopeptidase can hydrolyze beta-amyloid(1-40) but shows no effect on beta-amyloid precursor protein metabolism. Peptides 16:647–652CrossRefGoogle Scholar
  29. 29.
    Huttenrauch M, Baches S, Gerth J, Bayer TA, Weggen S, Wirths O (2015) Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis 44:1291–1302.  https://doi.org/10.3233/JAD-142463 CrossRefGoogle Scholar
  30. 30.
    Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E et al (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150.  https://doi.org/10.1038/72237 CrossRefGoogle Scholar
  31. 31.
    Jansen I, Savage J, Watanabe K, Bryois J, Williams D, Steinberg S et al (2018) Genetic meta-analysis identifies 9 novel loci and functional pathways for Alzheimers disease risk. bioRxiv 258533; doi:  https://doi.org/10.1101/258533
  32. 32.
    Jantaratnotai N, Ryu JK, Kim SU, McLarnon JG (2003) Amyloid beta peptide-induced corpus callosum damage and glial activation in vivo. NeuroReport 14:1429–1433.  https://doi.org/10.1097/01.wnr.0000086097.47480.a0 CrossRefGoogle Scholar
  33. 33.
    Jefferson T, Causevic M, Auf dem Keller U, Schilling O, Isbert S, Geyer R et al (2011) Metalloprotease Meprin beta Generates Nontoxic N-terminal Amyloid Precursor Protein Fragments in Vivo. J Biol Chem 286:27741–27750.  https://doi.org/10.1074/jbc.M111.252718 CrossRefGoogle Scholar
  34. 34.
    Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16:1210–1214.  https://doi.org/10.1038/nm.2224 CrossRefGoogle Scholar
  35. 35.
    Kaether C, Lammich S, Edbauer D, Ertl M, Rietdorf J, Capell A et al (2002) Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol 158:551–561.  https://doi.org/10.1083/jcb.200201123 CrossRefGoogle Scholar
  36. 36.
    Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC et al (2002) APP transgenic mice Tg2576 accumulate Abeta peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer’s disease senile plaques. Biochemistry 41:922–928CrossRefGoogle Scholar
  37. 37.
    Kastyak-Ibrahim MZ, Di Curzio DL, Buist R, Herrera SL, Albensi BC, Del Bigio MR et al (2013) Neurofibrillary tangles and plaques are not accompanied by white matter pathology in aged triple transgenic-Alzheimer disease mice. Magn Reson Imaging 31:1515–1521.  https://doi.org/10.1016/j.mri.2013.06.013 CrossRefGoogle Scholar
  38. 38.
    Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113.  https://doi.org/10.1186/s13059-015-0676-3 CrossRefGoogle Scholar
  39. 39.
    Krstic D, Rodriguez M, Knuesel I (2012) Regulated proteolytic processing of Reelin through interplay of tissue plasminogen activator (tPA), ADAMTS-4, ADAMTS-5, and their modulators. PLoS ONE 7:e47793.  https://doi.org/10.1371/journal.pone.0047793 CrossRefGoogle Scholar
  40. 40.
    Kummer MP, Heneka MT (2014) Truncated and modified amyloid-beta species. Alzheimers Res Ther 6:28.  https://doi.org/10.1186/alzrt258 CrossRefGoogle Scholar
  41. 41.
    Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC et al (2001) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276:12991–12998.  https://doi.org/10.1074/jbc.M007859200 CrossRefGoogle Scholar
  42. 42.
    Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger TL et al (2016) White matter hyperintensities are a core feature of Alzheimer’s disease: evidence from the dominantly inherited Alzheimer network. Ann Neurol 79:929–939.  https://doi.org/10.1002/ana.24647 CrossRefGoogle Scholar
  43. 43.
    Lemarchant S, Pomeshchik Y, Kidin I, Karkkainen V, Valonen P, Lehtonen S et al (2016) ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 11:10.  https://doi.org/10.1186/s13024-016-0078-3 CrossRefGoogle Scholar
  44. 44.
    Levy C, Brooks JM, Chen J, Su J, Fox MA (2015) Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex. J Comp Neurol 523:629–648.  https://doi.org/10.1002/cne.23701 CrossRefGoogle Scholar
  45. 45.
    Lewis H, Beher D, Cookson N, Oakley A, Piggott M, Morris CM et al (2006) Quantification of Alzheimer pathology in ageing and dementia: age-related accumulation of amyloid-beta(42) peptide in vascular dementia. Neuropathol Appl Neurobiol 32:103–118.  https://doi.org/10.1111/j.1365-2990.2006.00696.x CrossRefGoogle Scholar
  46. 46.
    Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247.  https://doi.org/10.1038/nprot.2007.135 CrossRefGoogle Scholar
  47. 47.
    Marioni R, Harris SE, McRae AF, Zhang Q, Hagenaars SP, Hill WD et al (2018) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 8:99. https://doi.org/10.1038/s41398-018-0150-6 Google Scholar
  48. 48.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci U S A 82:4245–4249CrossRefGoogle Scholar
  49. 49.
    McAleese KE, Walker L, Graham S, Moya ELJ, Johnson M, Erskine D et al (2017) Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol 134:459–473.  https://doi.org/10.1007/s00401-017-1738-2 CrossRefGoogle Scholar
  50. 50.
    Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K et al (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301:41–52.  https://doi.org/10.1006/abbi.1993.1112 CrossRefGoogle Scholar
  51. 51.
    Moore BD, Chakrabarty P, Levites Y, Kukar TL, Baine AM, Moroni T et al (2012) Overlapping profiles of Abeta peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res Ther 4:18.  https://doi.org/10.1186/alzrt121 CrossRefGoogle Scholar
  52. 52.
    Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 6:22.  https://doi.org/10.1186/s40478-018-0515-3 CrossRefGoogle Scholar
  53. 53.
    Nhan HS, Chiang K, Koo EH (2015) The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 129:1–19.  https://doi.org/10.1007/s00401-014-1347-2 CrossRefGoogle Scholar
  54. 54.
    Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140CrossRefGoogle Scholar
  55. 55.
    Oberstein TJ, Spitzer P, Klafki HW, Linning P, Neff F, Knolker HJ et al (2015) Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Abeta peptides. Neurobiol Dis 73:24–35.  https://doi.org/10.1016/j.nbd.2014.08.031 CrossRefGoogle Scholar
  56. 56.
    Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 270:23895–23898CrossRefGoogle Scholar
  57. 57.
    Pohlkamp T, Wasser CR, Herz J (2017) Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 10:54.  https://doi.org/10.3389/fnmol.2017.00054 CrossRefGoogle Scholar
  58. 58.
    Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193.  https://doi.org/10.1007/s00401-010-0690-1 CrossRefGoogle Scholar
  59. 59.
    Portelius E, Lashley T, Westerlund A, Persson R, Fox NC, Blennow K et al (2015) Brain amyloid-beta fragment signatures in pathological ageing and Alzheimer’s disease by hybrid immunoprecipitation mass spectrometry. Neurodegener Dis 15:50–57.  https://doi.org/10.1159/000369465 CrossRefGoogle Scholar
  60. 60.
    Pratta MA, Yao W, Decicco C, Tortorella MD, Liu RQ, Copeland RA et al (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 278:45539–45545.  https://doi.org/10.1074/jbc.M303737200 CrossRefGoogle Scholar
  61. 61.
    Pruvost M, Lepine M, Leonetti C, Etard O, Naveau M, Agin V et al (2017) ADAMTS-4 in oligodendrocytes contributes to myelination with an impact on motor function. Glia 65:1961–1975.  https://doi.org/10.1002/glia.23207 CrossRefGoogle Scholar
  62. 62.
    Reinert J, Richard BC, Klafki HW, Friedrich B, Bayer TA, Wiltfang J et al (2016) Deposition of C-terminally truncated Abeta species Abeta37 and Abeta39 in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol Commun 4:24.  https://doi.org/10.1186/s40478-016-0294-7 CrossRefGoogle Scholar
  63. 63.
    Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA et al (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27:7817–7826.  https://doi.org/10.1523/jneurosci.1026-07.2007 CrossRefGoogle Scholar
  64. 64.
    Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y et al (2007) Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130:1767–1776.  https://doi.org/10.1093/brain/awm102 CrossRefGoogle Scholar
  65. 65.
    Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J et al (2002) Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41:11080–11090CrossRefGoogle Scholar
  66. 66.
    Schonherr C, Bien J, Isbert S, Wichert R, Prox J, Altmeppen H et al (2016) Generation of aggregation prone N-terminally truncated amyloid beta peptides by meprin beta depends on the sequence specificity at the cleavage site. Mol Neurodegener 11:19.  https://doi.org/10.1186/s13024-016-0084-5 CrossRefGoogle Scholar
  67. 67.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608.  https://doi.org/10.15252/emmm.201606210 CrossRefGoogle Scholar
  68. 68.
    Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591CrossRefGoogle Scholar
  69. 69.
    Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831.  https://doi.org/10.1038/nn.4160 CrossRefGoogle Scholar
  70. 70.
    Skaper SD, Evans NA, Evans NA, Rosin C, Facci L, Richardson JC (2009) Oligodendrocytes are a novel source of amyloid peptide generation. Neurochem Res 34:2243–2250.  https://doi.org/10.1007/s11064-009-0022-9 CrossRefGoogle Scholar
  71. 71.
    Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, Arner EC et al (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56:575–585.  https://doi.org/10.1002/art.22334 CrossRefGoogle Scholar
  72. 72.
    Sun SW, Song SK, Harms MP, Lin SJ, Holtzman DM, Merchant KM et al (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191:77–85.  https://doi.org/10.1016/j.expneurol.2004.09.006 CrossRefGoogle Scholar
  73. 73.
    Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R et al (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664–1666CrossRefGoogle Scholar
  74. 74.
    Tortorella MD, Malfait F, Barve RA, Shieh HS, Malfait AM (2009) A review of the ADAMTS family, pharmaceutical targets of the future. Curr Pharm Des 15:2359–2374CrossRefGoogle Scholar
  75. 75.
    Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I et al (2000) Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 275:18566–18573.  https://doi.org/10.1074/jbc.M909383199 CrossRefGoogle Scholar
  76. 76.
    Wang P, Tortorella M, England K, Malfait AM, Thomas G, Arner EC et al (2004) Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J Biol Chem 279:15434–15440.  https://doi.org/10.1074/jbc.M312797200 CrossRefGoogle Scholar
  77. 77.
    Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216CrossRefGoogle Scholar
  78. 78.
    Willem M, Lammich S, Haass C (2009) Function, regulation and therapeutic properties of beta-secretase (BACE1). Semin Cell Dev Biol 20:175–182.  https://doi.org/10.1016/j.semcdb.2009.01.003 CrossRefGoogle Scholar
  79. 79.
    Wirths O, Walter S, Kraus I, Klafki HW, Stazi M, Oberstein TJ et al (2017) N-truncated Abeta4-x peptides in sporadic Alzheimer’s disease cases and transgenic Alzheimer mouse models. Alzheimers Res Ther 9:80.  https://doi.org/10.1186/s13195-017-0309-z CrossRefGoogle Scholar
  80. 80.
    Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP et al (2001) Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci 21:Rc118CrossRefGoogle Scholar
  81. 81.
    Yamamoto K, Owen K, Parker AE, Scilabra SD, Dudhia J, Strickland DK et al (2014) Low density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytic clearance of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4): functional differences of non-catalytic domains of ADAMTS-4 and ADAMTS-5 in LRP1 binding. J Biol Chem 289:6462–6474.  https://doi.org/10.1074/jbc.M113.545376 CrossRefGoogle Scholar
  82. 82.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947.  https://doi.org/10.1523/jneurosci.1860-14.2014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Susanne Walter
    • 1
  • Thorsten Jumpertz
    • 1
  • Melanie Hüttenrauch
    • 2
  • Isabella Ogorek
    • 1
  • Hermeto Gerber
    • 3
    • 4
  • Steffen E. Storck
    • 9
  • Silvia Zampar
    • 2
  • Mitko Dimitrov
    • 5
  • Sandra Lehmann
    • 1
  • Klaudia Lepka
    • 6
  • Carsten Berndt
    • 6
  • Jens Wiltfang
    • 2
  • Christoph Becker-Pauly
    • 7
  • Dirk Beher
    • 8
  • Claus U. Pietrzik
    • 9
  • Patrick C. Fraering
    • 3
  • Oliver Wirths
    • 2
    Email author
  • Sascha Weggen
    • 1
    Email author
  1. 1.Department of NeuropathologyHeinrich-Heine UniversityDüsseldorfGermany
  2. 2.Department of Psychiatry and Psychotherapy, University Medical CenterGeorg-August UniversityGoettingenGermany
  3. 3.Foundation EclosionGenevaSwitzerland
  4. 4.Department of BiologyUniversity of FribourgFribourgSwitzerland
  5. 5.Brain Mind InstituteSwiss Federal Institute of TechnologyLausanneSwitzerland
  6. 6.Department of NeurologyHeinrich-Heine UniversityDüsseldorfGermany
  7. 7.Institute of BiochemistryChristian-Albrechts-UniversityKielGermany
  8. 8.Asceneuron SA, EPFL Innovation ParkLausanneSwitzerland
  9. 9.Institute for PathobiochemistryUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany

Personalised recommendations