Advertisement

Acta Neuropathologica

, Volume 137, Issue 1, pp 71–88 | Cite as

Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia

  • Ethan G. Geier
  • Mathieu Bourdenx
  • Nadia J. Storm
  • J. Nicholas Cochran
  • Daniel W. Sirkis
  • Ji-Hye Hwang
  • Luke W. Bonham
  • Eliana Marisa Ramos
  • Antonio Diaz
  • Victoria Van Berlo
  • Deepika Dokuru
  • Alissa L. Nana
  • Anna Karydas
  • Maureen E. Balestra
  • Yadong Huang
  • Silvia P. Russo
  • Salvatore Spina
  • Lea T. Grinberg
  • William W. Seeley
  • Richard M. Myers
  • Bruce L. Miller
  • Giovanni Coppola
  • Suzee E. Lee
  • Ana Maria Cuervo
  • Jennifer S. YokoyamaEmail author
Original Paper

Abstract

Pathogenic variation in MAPT, GRN, and C9ORF72 accounts for at most only half of frontotemporal lobar degeneration (FTLD) cases with a family history of neurological disease. This suggests additional variants and genes that remain to be identified as risk factors for FTLD. We conducted a case–control genetic association study comparing pathologically diagnosed FTLD patients (n = 94) to cognitively normal older adults (n = 3541), and found suggestive evidence that gene-wide aggregate rare variant burden in MFSD8 is associated with FTLD risk. Because homozygous mutations in MFSD8 cause neuronal ceroid lipofuscinosis (NCL), similar to homozygous mutations in GRN, we assessed rare variants in MFSD8 for relevance to FTLD through experimental follow-up studies. Using post-mortem tissue from middle frontal gyrus of patients with FTLD and controls, we identified increased MFSD8 protein levels in MFSD8 rare variant carriers relative to non-variant carrier patients with sporadic FTLD and healthy controls. We also observed an increase in lysosomal and autophagy-related proteins in MFSD8 rare variant carrier and sporadic FTLD patients relative to controls. Immunohistochemical analysis revealed that MFSD8 was expressed in neurons and astrocytes across subjects, without clear evidence of abnormal localization in patients. Finally, in vitro studies identified marked disruption of lysosomal function in cells from MFSD8 rare variant carriers, and identified one rare variant that significantly increased the cell surface levels of MFSD8. Considering the growing evidence for altered autophagy in the pathogenesis of neurodegenerative disorders, our findings support a role of NCL genes in FTLD risk and suggest that MFSD8-associated lysosomal dysfunction may contribute to FTLD pathology.

Keywords

Autophagy Frontotemporal dementia Genetics Lysosomes Neurodegeneration Neuronal ceroid lipofuscinosis 

Notes

Acknowledgements

We thank Jason Chen and the New York Genome Center for technical support of whole genome sequencing. Primary support for this study was provided by the Rainwater Charitable Foundation (JSY, AMC, SEL, GC, WWS, YH). Additional support was provided by the Bluefield Project to Cure FTD (JSY, WWS), Association for Frontotemporal Degeneration Susan Marcus Memorial Fund Clinical Research Grant (JSY), Larry L. Hillblom Foundation 2016-A-005-SUP (JSY), National Institute on Aging K01 AG049152 (JSY), John Douglas French Alzheimer’s Foundation (JSY, GC), National Institute on Aging P01 AG1972403 (BLM), National Institute on Aging P50 AG023501 (BLM), National Institute on Aging R01 AG023501, AG048030, NS079725 (YH), and R01 AG054108 (AMC), National Institutes of Health F32 AG050404 (DWS), RC1 AG035610 (GC), and R01 AG26938 (GC). Takeda Pharmaceutical Company Limited (GC). We acknowledge the support of the National Institute of Neurological Disorders and Stroke Informatics Center for Neurogenetics and Neurogenomics, P30 NS062691 (GC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions

Experimental design: EGG, NS, SEL, AMC, JSY. Data collection: EGG, NS, MB, JNC, DWS, JHH, EMR, AD, VVB, DD, SS. Data analysis and interpretation: EGG, NS, MB, JNC, DWS, JHH, LWB, EMR, SPR, SS, LTG, WWS, BLM, GC, SEL, AMC, JSY. Subject recruitment: AK, LTG, WWS, BLM. Provided technical and/or administrative support: ANL, AK, MEB, YH, RMM. Writing the manuscript: EGG, NS, MB, AMC, JSY.

Compliance with ethical standards

Conflict of interest

YH is a co-founder and SAB member of E-Scape Bio, Inc. AMC is a co-founder and SAB member of Selphagy Inc.

Supplementary material

401_2018_1925_MOESM1_ESM.docx (10 mb)
Supplementary material 1 (DOCX 10242 kb)

References

  1. 1.
    1000 Genomes Project Consortium RA, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al (2015) A global reference for human genetic variation. Nature 526:68–74.  https://doi.org/10.1038/nature15393 CrossRefGoogle Scholar
  2. 2.
    Aiello C, Terracciano A, Simonati A, Discepoli G, Cannelli N, Claps D et al (2009) Mutations in MFSD8/CLN7 are a frequent cause of variant-late infantile neuronal ceroid lipofuscinosis. Hum Mutat 30:E530–E540.  https://doi.org/10.1002/humu.20975 CrossRefGoogle Scholar
  3. 3.
    Almeida MR, Macário MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I (2016) Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging 41:200.e1–200.e5.  https://doi.org/10.1016/j.neurobiolaging.2016.02.019 CrossRefGoogle Scholar
  4. 4.
    Asanuma K, Tanida I, Shirato I, Ueno T, Takahara H, Nishitani T et al (2003) MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J 17:1165–1167.  https://doi.org/10.1096/fj.02-0580fje CrossRefGoogle Scholar
  5. 5.
    Auteri JS, Okada A, Bochaki V, Fred Dice J (1983) Regulation of intracellular protein degradation in IMR-90 human diploid fibroblasts. J Cell Physiol 115:167–174.  https://doi.org/10.1002/jcp.1041150210 CrossRefGoogle Scholar
  6. 6.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919.  https://doi.org/10.1038/nature05016 CrossRefGoogle Scholar
  7. 7.
    Bird TD (2009) Progranulin plasma levels in the diagnosis of frontotemporal dementia. Brain 132:568–569.  https://doi.org/10.1093/brain/awp009 CrossRefGoogle Scholar
  8. 8.
    Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232.  https://doi.org/10.1111/j.1365-2818.2006.01706.x CrossRefGoogle Scholar
  9. 9.
    Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S (2016) Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet 25:777–791.  https://doi.org/10.1093/hmg/ddv615 CrossRefGoogle Scholar
  10. 10.
    Carson AR, Smith EN, Matsui H, Brækkan SK, Jepsen K, Hansen J-B et al (2014) Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Bioinform 15:125.  https://doi.org/10.1186/1471-2105-15-125 CrossRefGoogle Scholar
  11. 11.
    Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924.  https://doi.org/10.1038/nature05017 CrossRefGoogle Scholar
  12. 12.
    Cuervo AM, Dice JF, Knecht E (1997) A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 272:5606–5615CrossRefGoogle Scholar
  13. 13.
    Do R, Kathiresan S, Abecasis GR (2012) Exome sequencing and complex disease: practical aspects of rare variant association studies. Hum Mol Genet 21:R1–R9.  https://doi.org/10.1093/hmg/dds387 CrossRefGoogle Scholar
  14. 14.
    Dubois B, Feldman H, Jacova C (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629.  https://doi.org/10.1016/S1474-4422(14)70090-0 CrossRefGoogle Scholar
  15. 15.
    Fuentes Fajardo KV, Adams D, Mason CE, NISC Comparative Sequencing Program CE, Sincan M, Tifft C et al (2012) Detecting false-positive signals in exome sequencing. Hum Mutat 33:609–613.  https://doi.org/10.1002/humu.22033 CrossRefGoogle Scholar
  16. 16.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014CrossRefGoogle Scholar
  17. 17.
    Götzl JK, Lang CM, Haass C, Capell A (2016) Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 32:122–139.  https://doi.org/10.1016/j.arr.2016.04.008 CrossRefGoogle Scholar
  18. 18.
    Han L, Zhu Y, Liu M, Zhou Y, Lu G, Lan L et al (2017) Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. Proc Natl Acad Sci USA 114:10089–10094.  https://doi.org/10.1073/pnas.1709241114 CrossRefGoogle Scholar
  19. 19.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889.  https://doi.org/10.1038/nature04724 CrossRefGoogle Scholar
  20. 20.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2013) National Institute on Aging—Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13.  https://doi.org/10.1016/j.jalz.2011.10.007.National CrossRefGoogle Scholar
  21. 21.
    Johnson CW, Melia TJ, Yamamoto A (2012) Modulating macroautophagy: a neuronal perspective. Future Med Chem 4:1715–1731.  https://doi.org/10.4155/fmc.12.112 CrossRefGoogle Scholar
  22. 22.
    Kaushik S, Cuervo AM (2009) Methods to monitor chaperone-mediated autophagy. Methods Enzymol 452:297–324.  https://doi.org/10.1016/S0076-6879(08)03619-7 CrossRefGoogle Scholar
  23. 23.
    Kaushik S, Cuervo AM (2015) Proteostasis and aging. Nat Med 21:1406–1415.  https://doi.org/10.1038/nm.4001 CrossRefGoogle Scholar
  24. 24.
    Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381.  https://doi.org/10.1038/s41580-018-0001-6 CrossRefGoogle Scholar
  25. 25.
    Kim E-J, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL et al (2012) Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22:251–259.  https://doi.org/10.1093/cercor/bhr004 CrossRefGoogle Scholar
  26. 26.
    Koga H, Kaushik S, Cuervo AM (2010) Inhibitory effect of intracellular lipid load on macroautophagy. Autophagy 6:825–827.  https://doi.org/10.1096/fj.09-144519 CrossRefGoogle Scholar
  27. 27.
    Kohan R, Pesaola F, Guelbert N, Pons P, Oller-Ramirez AM, Rautenberg G et al (2015) The neuronal ceroid lipofuscinoses program: a translational research experience in Argentina. Biochim Biophys Acta 1852:2301–2311.  https://doi.org/10.1016/j.bbadis.2015.05.003 CrossRefGoogle Scholar
  28. 28.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884.  https://doi.org/10.1038/nature04723 CrossRefGoogle Scholar
  29. 29.
    Kousi M, Lehesjoki A-E, Mole SE (2012) Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 33:42–63.  https://doi.org/10.1002/humu.21624 CrossRefGoogle Scholar
  30. 30.
    Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J, Topcu M et al (2009) Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis. Brain 132:810–819.  https://doi.org/10.1093/brain/awn366 CrossRefGoogle Scholar
  31. 31.
    Lee J-A, Gao F-B (2008) Roles of ESCRT in autophagy-associated neurodegeneration. Autophagy 4:230–232CrossRefGoogle Scholar
  32. 32.
    Lee J, Sands ZA, Biggin PC (2016) A numbering system for MFS transporter proteins. Front Mol Biosci 3:21.  https://doi.org/10.3389/fmolb.2016.00021 Google Scholar
  33. 33.
    Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA et al (2012) Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am J Hum Genet 91:224–237.  https://doi.org/10.1016/j.ajhg.2012.06.007 CrossRefGoogle Scholar
  34. 34.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291CrossRefGoogle Scholar
  35. 35.
    Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C (2015) Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum Mutat 36:815–822.  https://doi.org/10.1002/humu.22813 CrossRefGoogle Scholar
  36. 36.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefGoogle Scholar
  37. 37.
    Mackenzie IR, Neumann M, Baborie A, Sampathu D, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113CrossRefGoogle Scholar
  38. 38.
    Mackenzie IRA, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4.  https://doi.org/10.1007/s00401-009-0612-2 CrossRefGoogle Scholar
  39. 39.
    Mandel H, Cohen Katsanelson K, Khayat M, Chervinsky I, Vladovski E, Iancu TC et al (2014) Clinico-pathological manifestations of variant late infantile neuronal ceroid lipofuscinosis (vLINCL) caused by a novel mutation in MFSD8 gene. Eur J Med Genet 57:607–612.  https://doi.org/10.1016/j.ejmg.2014.09.004 CrossRefGoogle Scholar
  40. 40.
    Masureel M, Martens C, Stein RA, Mishra S, Ruysschaert J-M, Mchaourab HS et al (2014) Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem Biol 10:149–155.  https://doi.org/10.1038/nchembio.1408 CrossRefGoogle Scholar
  41. 41.
    McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies. Neurology 89:88–100.  https://doi.org/10.1212/wnl.0000000000004058 CrossRefGoogle Scholar
  42. 42.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefGoogle Scholar
  43. 43.
    Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A et al (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–1034.  https://doi.org/10.1016/j.neuron.2017.01.022 CrossRefGoogle Scholar
  44. 44.
    Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357.  https://doi.org/10.1038/nrn3961 CrossRefGoogle Scholar
  45. 45.
    Mercy L, Hodges JR, Dawson K, Barker RA, Brayne C (2008) Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology 71:1496–1499.  https://doi.org/10.1212/01.wnl.0000334277.16896.fa CrossRefGoogle Scholar
  46. 46.
    Miller ZA, Mandelli ML, Rankin KP, Henry ML, Babiak MC, Frazier DT et al (2013) Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain 136:3461–3473.  https://doi.org/10.1093/brain/awt242 CrossRefGoogle Scholar
  47. 47.
    Mole SE, Cotman SL (2015) Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta 1852:2237–2241.  https://doi.org/10.1016/j.bbadis.2015.05.011 CrossRefGoogle Scholar
  48. 48.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997.  https://doi.org/10.1038/nm.3232 CrossRefGoogle Scholar
  49. 49.
    Olszewska DA, Lonergan R, Fallon EM, Lynch T (2016) Genetics of frontotemporal dementia. Curr Neurol Neurosci Rep 16:107.  https://doi.org/10.1007/s11910-016-0707-9 CrossRefGoogle Scholar
  50. 50.
    Onyike CU, Diehl-Schmid J (2013) The epidemiology of frontotemporal dementia. Int Rev Psychiatry 25:130–137.  https://doi.org/10.3109/09540261.2013.776523 CrossRefGoogle Scholar
  51. 51.
    Orenstein SJ, Kuo S-H, Tasset I, Arias E, Koga H, Fernandez-Carasa I et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–406.  https://doi.org/10.1038/nn.3350 CrossRefGoogle Scholar
  52. 52.
    Patel B, Cuervo AM (2015) Methods to study chaperone-mediated autophagy. Methods 75:133–140.  https://doi.org/10.1016/j.ymeth.2015.01.003 CrossRefGoogle Scholar
  53. 53.
    Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH et al (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–536.  https://doi.org/10.1038/nature12042 CrossRefGoogle Scholar
  54. 54.
    Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R et al (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92.  https://doi.org/10.1007/s00401-015-1436-x CrossRefGoogle Scholar
  55. 55.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefGoogle Scholar
  56. 56.
    Rankin KP, Kramer J, Miller BL (2005) Patterns of cognitive and emotional empathy in frontotemporal lobar degeneration. Cogn Behav Neurol 18:28–36CrossRefGoogle Scholar
  57. 57.
    Rascovsky K, Hodges JR, Kipps CM, Johnson JK, Seeley WW, Mendez MF et al (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord 21:S14–S18.  https://doi.org/10.1097/WAD.0b013e31815c3445 CrossRefGoogle Scholar
  58. 58.
    Rohrer JD, Guerreiro R, Vandrovcova J, Uphill J, Reiman D, Beck J et al (2009) The heritability and genetics of frontotemporal lobar degeneration. Neurology 73:1451–1456CrossRefGoogle Scholar
  59. 59.
    Roosing S, van den Born LI, Sangermano R, Banfi S, Koenekoop RK, Zonneveld-Vrieling MN et al (2015) Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy. Ophthalmology 122:170–179.  https://doi.org/10.1016/j.ophtha.2014.07.040 CrossRefGoogle Scholar
  60. 60.
    Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635.  https://doi.org/10.1038/nrm2745 CrossRefGoogle Scholar
  61. 61.
    See TM, LaMarre AK, Lee SE, Miller BL (2010) Genetic causes of frontotemporal degeneration. J Geriatr Psychiatry Neurol 23:260–268CrossRefGoogle Scholar
  62. 62.
    Sharifi A, Kousi M, Sagné C, Bellenchi GC, Morel L, Darmon M et al (2010) Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet 19:4497–4514.  https://doi.org/10.1093/hmg/ddq381 CrossRefGoogle Scholar
  63. 63.
    Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW (2014) FLAGS, frequently mutated genes in public exomes. BMC Med Genom 7:64.  https://doi.org/10.1186/s12920-014-0064-y CrossRefGoogle Scholar
  64. 64.
    Sieben A, Van Langenhove T, Engelborghs S, Martin J-J, Boon P, Cras P et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353–372.  https://doi.org/10.1007/s00401-012-1029-x CrossRefGoogle Scholar
  65. 65.
    Siintola E, Topcu M, Aula N, Lohi H, Minassian BA, Paterson AD et al (2007) The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet 81:136–146.  https://doi.org/10.1086/518902 CrossRefGoogle Scholar
  66. 66.
    Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos ME, Wang Q et al (2016) Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun 4:1–11.  https://doi.org/10.1186/s40478-016-0367-7 CrossRefGoogle Scholar
  67. 67.
    Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107.  https://doi.org/10.1016/j.ajhg.2012.04.021 CrossRefGoogle Scholar
  68. 68.
    Steenhuis P, Herder S, Gelis S, Braulke T, Storch S (2010) Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic 11:987–1000.  https://doi.org/10.1111/j.1600-0854.2010.01073.x CrossRefGoogle Scholar
  69. 69.
    Tartaglia MC, Sidhu M, Laluz V, Racine C, Rabinovici GD, Creighton K et al (2010) Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathol 119:365–374.  https://doi.org/10.1007/s00401-009-0605-1 CrossRefGoogle Scholar
  70. 70.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354CrossRefGoogle Scholar
  71. 71.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164.  https://doi.org/10.1093/nar/gkq603 CrossRefGoogle Scholar
  72. 72.
    Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow E-M et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170.  https://doi.org/10.1093/hmg/ddp367 CrossRefGoogle Scholar
  73. 73.
    Ward ME, Chen R, Huang H-Y, Ludwig C, Telpoukhovskaia M, Taubes A et al (2017) Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med 9:eaah5642.  https://doi.org/10.1126/scitranslmed.aah5642 CrossRefGoogle Scholar
  74. 74.
    Ward ME, Taubes A, Chen R, Miller BL, Sephton CF, Gelfand JM et al (2014) Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. J Exp Med 211:1937–1945.  https://doi.org/10.1084/jem.20140214 CrossRefGoogle Scholar
  75. 75.
    Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13:805–811.  https://doi.org/10.1038/nn.2575 CrossRefGoogle Scholar
  76. 76.
    Wu L, Yavas G, Hong H, Tong W, Xiao W (2017) Direct comparison of performance of single nucleotide variant calling in human genome with alignment-based and assembly-based approaches. Sci Rep 7:10963.  https://doi.org/10.1038/s41598-017-10826-9 CrossRefGoogle Scholar
  77. 77.
    Yokoyama JS, Lee SE (2016) Molecular pathways leading to the clinical phenomenology of frontotemporal dementia. In: Genomics, circuits, and pathways in clinical neuropsychiatry.  https://doi.org/10.1016/B978-0-12-800105-9.00033-0
  78. 78.
    Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E et al (2010) The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 67:161–170Google Scholar
  79. 79.
    van der Zee J, Mariën P, Crols R, Van Mossevelde S, Dillen L, Perrone F et al (2016) Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD. Neurol Genet 2:e102.  https://doi.org/10.1212/nxg.0000000000000102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ethan G. Geier
    • 1
  • Mathieu Bourdenx
    • 2
  • Nadia J. Storm
    • 2
  • J. Nicholas Cochran
    • 3
  • Daniel W. Sirkis
    • 4
  • Ji-Hye Hwang
    • 1
    • 6
  • Luke W. Bonham
    • 1
  • Eliana Marisa Ramos
    • 8
  • Antonio Diaz
    • 2
  • Victoria Van Berlo
    • 8
  • Deepika Dokuru
    • 8
  • Alissa L. Nana
    • 1
  • Anna Karydas
    • 1
  • Maureen E. Balestra
    • 5
  • Yadong Huang
    • 5
    • 6
    • 7
  • Silvia P. Russo
    • 1
  • Salvatore Spina
    • 1
    • 6
  • Lea T. Grinberg
    • 1
    • 6
  • William W. Seeley
    • 1
    • 6
  • Richard M. Myers
    • 3
  • Bruce L. Miller
    • 1
  • Giovanni Coppola
    • 8
  • Suzee E. Lee
    • 1
  • Ana Maria Cuervo
    • 2
  • Jennifer S. Yokoyama
    • 1
    Email author
  1. 1.Department of Neurology, Memory and Aging CenterUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Development and Molecular Biology, Institute for Aging StudiesAlbert Einstein College of MedicineNew YorkUSA
  3. 3.HudsonAlpha Institute for BiotechnologyHuntsvilleUSA
  4. 4.Department of Molecular and Cell Biology, Howard Hughes Medical InstituteUniversity of California, BerkeleyBerkeleyUSA
  5. 5.Gladstone Institute of Neurological DiseaseSan FranciscoUSA
  6. 6.Department of PathologyUniversity of California, San FranciscoSan FranciscoUSA
  7. 7.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA
  8. 8.Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations